- Responsable: Fresan Javier
- Responsable: Juppin Carole
- Responsable: Payen De La Garanderie Eléonore
Ce cours est un enseignement de base en mathématiques permettant d'acquérir des outils utilisés dans les enseignements de mathématiques appliquées, physique, mécanique et économie.
Il prépare aussi aux autres cours de mathématiques plus avancés, en particulier ceux du programme d'approfondissement/M1.
La 1ère partie (5 blocs) est consacrée à la théorie des fonctions holomorphes et la seconde (5 blocs) au calcul différentiel.
- Responsable: Afgoustidis Alexandre
- Responsable: Astorg Matthieu
- Responsable: Freixas Gerard
- Responsable: Leguil Martin
- Responsable: Prange Christophe
- Responsable: Renard David
- Responsable: Amini Omid
Ce cours présente une formation de base en analyse. Ce module permet de dominer les outils mathématiques utilisés dans les enseignements de mathématiques appliquées, physique, mécanique et économie. Il ouvre la voie aux programmes d’approfondissement de mathématiques de troisième année.
Le cours présente le formalisme des distributions, introduites par Laurent Schwartz à la fin des années 1940, qui fournit un cadre naturel pour l’étude de la transformation de Fourier. Il se concentre ensuite sur l’étude des propriétés fondamentales des principales équations aux dérivées partielles de la physique mathématique.
- Distributions, dérivation, convolution, régularisation.
- Transformation et séries de Fourier.
- Equations de Poisson et de Laplace. Fonctions harmoniques.
- Equation de la chaleur.
- Equation des ondes et de Schrödinger.
F. Golse: "Distributions, analyse de Fourier et équations aux dérivées partielles"
Appendice "Intégration sur les surfaces"
Langue du cours : Français
- Responsable: Golse François
- Responsable: Jendrej Jacek
Dans ce modal, nous explorons la notion de pavages, et à travers elle celle de groupes et d'actions de groupes. Nous aborderons les résultats classiques de Bieberbach sur les pavages réguliers du plans, les fameux pavages apériodiques de Penrose, et les pavages affines du plan.
Références :
Pavage du plan, notes d’un mini cours donné à l’École polytechnique
http://www.math.polytechnique.fr/xups/xups01.01.pdf
Langue du cours : Français
- Responsable: Tessera Romain
La théorie de Galois est née au XIX ème siècle pour étudier l'existence de formules pour les solutions d'une équation polynômiale (en fonction des coefficients de l'équation). Cette théorie, à la fois puissante et élégante, fut à l'origine d'un pan entier de l'algèbre moderne, et a depuis connu un développement considérable. Elle demeure un sujet de recherche extrêmement actif.
L'objet de ce cours est dans un premier temps d'introduire les bases et outils d'algèbre générale (groupes, anneaux, algèbres, quotients, extensions de corps...) qui permettront dans un deuxième temps de développer la théorie de Galois, ainsi que certaines de ses applications les plus remarquables.
Au delà de l'intérêt propre du sujet, le cours se veut être une bonne introduction à l'algèbre et à ses diverses applications, tant en mathématiques que dans d'autres disciplines (informatique avec les corps finis, physique ou chimie avec la théorie des groupes par exemple).
* les pré-requis :
Algèbre linéaire classique enseigné en classes préparatoires ou pendant deux premières années d'université.
* les acquis attendus en fin de module
Acquis théoriques :
- Connaissance des structures fondamentales de l'algèbre générale.
- Compréhension des concepts fondamentaux de la théorie de Galois (extensions galoisiennes, groupes de Galois)
- Maîtrise des exemples les plus importants (corps finis, extensions cyclotomiques, extensions résolubles).
- Maîtrise des principales applications historiques (résolubilité des équations polynômiales, constructibilité des polygônes réguliers).
Acquis pratiques :
- Manipulation des structures algébriques fondamentales, calcul de degrés d'extensions.
- Détermination du caractère galoisien d'une extension.
- Calcul de groupes de Galois, notamment par réduction modulo p.
- Applications de la théorie, notamment en théorie des nombres et des corps.
* les modalités d'évaluations des acquis du module
- un contrôle classant en fin du cours
- un devoir maison
Langue du cours : Français
The aim of this course is first to introduce basics and tools of general algebra (groups, rings, algebras, quotients, field extensions...) which will allow in the second part of the course to develop Galois theory, as well as some of its most remarkable applications.
Beyond the the interest on the subject for itself, the course aims at being a good introduction to algebra and its applications, in Mathematics and in other fields (for instance Computer science with finite fields, Physics and Chemistry with group theory).
*Prerequisites
Standard linear algebra from the first two years at University.
* Knowledge expected at the end of the course :
Theoretical knowledge :
- Knowledge of fundamental structures in general algebra.
- Knowledge of fundamental concepts in Galois theory (Galois extensions, Galois group)
- Most important examples (finite fields, cyclotomic extensions solvable extensions).
- Main historical applications (solvable polynomial equations, constructability of regular polygons).
Practical knowledge :
- Handling of fundamental algebraic structures, computation of degrees of extensions.
- Characterization of Galois extensions.
- Computation of Galois groups, method of reduction modulo p.
- Applications of the theory, in particular to number theory and fields theory
* Evaluation : exam at the end of the course.and one homework
Language : French
- Responsable: Bijakowski Stéphane
- Responsable: Fantini Lorenzo
- Responsable: Ngo Dac Tuan
Ce cours entend fournir les bases de l’analyse fonctionnelle aussi bien en amont des applications aux équations aux dérivées partielles (équations elliptique, paraboliques ou hyperboliques), qu’en amont des applications aux algèbres d’opérateurs.
L’objectif du cours est de donner un panorama assez général de l’étude des espaces de Banach et des opérateurs entre espaces de Banach.
Le cours commence par des considérations géométriques : étude des convexes, Théorème de Helly, Théorème de séparation des convexes de Hahn-Banach, Théorème de Krein-Milman.
Puis, il se poursuit par l’étude des théorèmes qui forment le socle de l’analyse fonctionnelle : Lemme de Baire, Théorème de Banach-Steinhaus, Théorème de l’application ouverte et Théorème du graphe fermé.
Nous ouvrons ensuite un chapitre important sur l’étude des topologies faibles et des topologies faibles∗, ce qui nous amènera à l’énoncé du Théorème de Banach-Alaoglu (qui permet de “récupérer" un peu de compacité dans les espaces de dimension infinie).
Après nous être un peu égarés dans l’étude des espaces de Banach, nous verrons dans quelle mesure les espaces “réflexifs” et les espaces “séparables” constituent une classe intéressante d’espaces de Banach, qui jouissent de propriétés agréables.
Le chapitre suivant est consacré à l’étude des algèbres de Banach qui unifient sous une même bannière plusieurs cas particuliers que vous avez peut-être déjà vus (par exemple, l'exponentielle d'une matrice ou d'un endomorphisme). Ce chapitre culmine avec la preuve en trois lignes (mais qui nécessite d’avoir compris les 10 pages précédentes !) d’un beau résultat concernant les séries de Fourier.
Le cours se poursuit avec l’étude du spectre des opérateurs avec en particulier l’alternative de Fredholm, le spectre des opérateurs compacts pour terminer avec l’étude des opérateurs de Fredholm, qui généralisent en dimension infinie, les résultats que vous connaissez bien sur les applications linéaires entre espaces vectoriels de dimension finie.
Enfin, le dernier chapitre du cours est consacré aux opérateurs non-bornés et à l'analyse des semi-groupes d'opérateurs qui sont le point de départ de l'étude de nombreuses équations d'évolution. Dans ce cadre, nous démontrerons le Théorème de Hille-Yosida (ou plutôt une de ses versions connue sous le nom de Théorème de Lumer-Phillips) qui donne des conditions suffisantes pour qu'un opérateur soit le générateur infinitésimal d'un semi-groupe d'opérateurs.
Langue du cours : Français
Polycopié : Anglais
- Responsable: Laurent Camille
- Responsable: Pacard Frank
- Responsable: Prange Christophe