Ce cours est un enseignement de base en mathématiques permettant d'acquérir des outils utilisés dans les enseignements de mathématiques appliquées, physique, mécanique et économie.

Il prépare aussi aux autres cours de mathématiques plus avancés, en particulier ceux du programme d'approfondissement/M1.

La 1ère partie (5 blocs) est consacrée à la théorie des fonctions holomorphes et la seconde (5 blocs) au calcul différentiel. 

 




This course is a basic mathematics course providing the tools used in applied mathematics, physics, mechanics and economics.

It also prepares students for more advanced mathematics courses, in particular those of the M1 program.

The first part (5 blocks) is devoted to the theory of holomorphic functions and the second part (5 blocks) to differential calculus.

Ce cours présente une formation de base en analyse. Ce module permet de dominer les outils mathématiques utilisés dans les enseignements de mathématiques appliquées, physique, mécanique et économie. Il ouvre la voie aux programmes d’approfondissement de mathématiques de troisième année.

Le cours présente le formalisme des distributions, introduites par Laurent Schwartz à la fin des années 1940, qui fournit un cadre naturel pour l’étude de la transformation de Fourier. Il se concentre ensuite sur l’étude des propriétés fondamentales des principales équations aux dérivées partielles de la physique mathématique.

- Distributions, dérivation, convolution, régularisation.
- Transformation et séries de Fourier.
- Equations de Poisson et de Laplace. Fonctions harmoniques.
- Equation de la chaleur.
- Equation des ondes et de Schrödinger.

F. Golse: "Distributions, analyse de Fourier et équations aux dérivées partielles"

Appendice "Intégration sur les surfaces"



Langue du cours : Français





This course provides basic training in analysis. This module enables students to master the mathematical tools used in applied mathematics, physics, mechanics and economics. It paves the way for third-year advanced mathematics programs.


The course introduces the formalism of distributions, introduced by Laurent Schwartz in the late 1940s, which provides a natural framework for the study of Fourier transformation. It then focuses on the  study of the fundamental properties of the main partial differential equations of mathematical physics

- Distributions, derivation, convolution, regularization.
- Fourier series and transformations.
- Poisson and Laplace equations. Harmonic functions.
- Heat equation.
- Wave and Schrödinger equations.

F. Golse: "Distributions, analyse de Fourier et équations aux dérivées partielles"

Appendix "Intégration sur les surfaces"

Course language : French

La théorie de Galois est née au XIX ème siècle pour étudier l'existence de formules pour les solutions d'une équation polynômiale (en fonction des coefficients de l'équation). Cette théorie, à la fois puissante et élégante, fut à l'origine d'un pan entier de l'algèbre moderne, et a depuis connu un développement considérable. Elle demeure un sujet de recherche extrêmement actif.

L'objet de ce cours est dans un premier temps d'introduire les bases et outils d'algèbre générale (groupes, anneaux, algèbres, quotients, extensions de corps...) qui permettront dans un deuxième temps de développer la théorie de Galois, ainsi que certaines de ses applications les plus remarquables.

Au delà de l'intérêt propre du sujet, le cours se veut être une bonne introduction à l'algèbre et à ses diverses applications, tant en mathématiques que dans d'autres disciplines (informatique avec les corps finis, physique ou chimie avec la théorie des groupes par exemple).

* les pré-requis :
Algèbre linéaire classique enseigné en classes préparatoires ou pendant deux premières années d'université.

* les acquis attendus en fin de module
Acquis théoriques :

- Connaissance des structures fondamentales de l'algèbre générale.
- Compréhension des concepts fondamentaux de la théorie de Galois (extensions galoisiennes, groupes de Galois)
- Maîtrise des exemples les plus importants (corps finis, extensions cyclotomiques, extensions résolubles).
- Maîtrise des principales applications historiques (résolubilité des équations polynômiales, constructibilité des polygônes réguliers).

Acquis pratiques :

- Manipulation des structures algébriques fondamentales, calcul de degrés d'extensions.
- Détermination du caractère galoisien d'une extension.
- Calcul de groupes de Galois, notamment par réduction modulo p.
- Applications de la théorie, notamment en théorie des nombres et des corps.

* les modalités d'évaluations des acquis du module


- un contrôle classant en fin du cours
- un devoir maison

Langue du cours : Français





Galois theory emerged in 19th century to study the existence of formulas for solutions of polynomial equation (in terms of the coefficients of the equation). The theory is both powerful and elegant and was the origin of a very large part of modern algebra. Nowadays it is also a very active research field.

The aim of this course is first to introduce basics and tools of general algebra (groups, rings, algebras, quotients, field extensions...) which will allow in the second part of the course to develop Galois theory, as well as some of its most remarkable applications.

Beyond the the interest on the subject for itself, the course aims at being a good introduction to algebra and its applications, in Mathematics and in other fields (for instance Computer science with finite fields, Physics and Chemistry with group theory).

 

*Prerequisites

Standard linear algebra from the first two years at University.


* Knowledge expected at the end of the course : 

 

Theoretical knowledge :

- Knowledge of fundamental structures in general algebra.

- Knowledge of fundamental concepts in Galois theory (Galois extensions, Galois group)

- Most important examples (finite fields, cyclotomic extensions solvable extensions).

- Main historical applications (solvable polynomial equations, constructability of regular polygons).

 

Practical knowledge :

- Handling of fundamental algebraic structures, computation of degrees of extensions.

- Characterization of Galois extensions.

- Computation of Galois groups, method of reduction modulo p.

- Applications of the theory, in particular to number theory and fields theory

 

* Evaluation : exam at the end of the course.and one homework

 

Language  : French

Ce cours entend fournir les bases de l’analyse fonctionnelle aussi bien en amont des applications aux équations aux dérivées partielles, qu’en amont des applications aux algèbres d’opérateurs.

L’objectif du cours est de donner un panorama assez général de l’étude des espaces de Banach et des opérateurs entre espaces de Banach.

Le cours commence par des considérations géométriques : étude des convexes, Théorème de Helly, Théorème de séparation des convexes de Hahn-Banach, Théorème de Krein-Milman.

Puis, il se poursuit par l’étude des théorèmes qui forment le socle de l’analyse fonctionnelle : Lemme de Baire, Théorème de Banach-Steinhaus, Théorème de l’application ouverte et Théorème du graphe fermé.

Nous ouvrons ensuite un chapitre important sur l’étude des topologies faibles et des topologies faibles-∗, ce qui nous amènera à l’énoncé du Théorème de Banach-Alaoglu (qui permet de “récupérer" un peu de compacité dans les espaces de dimension infinie).

Après nous être un peu égarés dans l’étude des espaces de Banach très généraux, nous verrons dans quelle mesure les espaces “réflexifs” et les espaces “séparables” constituent une classe intéressante d’espaces de Banach, car ils jouissent de propriétés agréables.

Le chapitre suivant est consacré à l’étude des algèbres de Banach qui unifient sous une même bannière plusieurs cas particuliers que vous avez peut-être déjà vus (par exemple, l'exponentielle d'une matrice ou d'un endomorphisme). Ce chapitre culmine avec la preuve en trois lignes (mais qui nécessite d’avoir compris les 10 pages précédentes) d’un beau résultat sur les séries de Fourier.

Le cours se termine sur l’étude du spectre des opérateurs avec en particulier l’alternative de Fredholm, le spectre des opérateurs compacts pour terminer avec l’étude des opérateurs de Fredholm, qui généralisent en dimension infinie, les résultats que vous connaissez bien sur les applications linéaires entre espaces vectoriels de dimension finie.

Langue du cours : Français
Polycopié : Anglais




This course intends to provide the foundations of Functional Analysis having in mind applications to partial differential equations and applications to operator algebras.

The objective of the course is to give a fairly general overview of the study of Banach spaces and operators between Banach spaces.

The course begins with geometric considerations: study of convex sets, Helly's Theorem, Hahn-Banach's convex separation Theorem, Krein-Milman's Theorem.

Then, it continues with the study of theorems which form the basis of functional analysis: Baire's Lemma, Banach-Steinhaus Theorem, Open Mapping Theorem and the Closed Graph Theorem.

We then open an important chapter on the study of weak topologies and weak-∗ topologies, which will lead us to the statement of the Banach-Alaoglu Theorem (which allows us to “recover" some compactness in infinite dimensional spaces ).

After getting a little lost in the study of very general Banach spaces, we will see to what extent “reflexive” spaces and “separable” spaces constitute an interesting class of Banach spaces, since they enjoy pleasant properties.

The next chapter is devoted to the study of Banach algebras which unify under the same banner several special cases that you may have already seen (e.g. exponential of a matrix or a linear map). This chapter culminates with the proof in three lines (but which requires having understood the previous 10 pages!) of a beautiful result on Fourier series.

The course ends with the study of the spectrum of operators with in particular the Fredholm alternative, the study of the spectrum of compact operators to culminate with the study of Fredholm operators, which generalize in infinite dimension, the results that you know well of course linear maps between finite-dimensional vector spaces.

 
Course language: French
Lecture notes: English
 
 
- Théorie de Hodge et géométries exotiques
 
- Depuis Poincaré, on étudie les propriétés mathématiques des espaces topologiques en leur associant des invariants algébriques.

 

Quand l’espace topologique est muni d’une métrique convenable, il est possible d’utiliser l’analyse pour représenter ces invariants algébriques par des solutions d’une équation de Laplace sur l’espace géométrique considéré, c’est l’objet d’une théorie mathématique qui porte le nom du mathématicien écossais William Hodge.

 

Que se passe-t-il quand la structure géométrique dégénère et l’espace devient singulier ? Question centrale avec de multiples liens avec la physique de par sa nature.

 

 

 

 




- Hodge theory and exotic geometries

- Since Poincaré, the mathematical properties of topological spaces have been studied by associating algebraic invariants with them.

When the topological space is provided with a suitable metric, it is possible to use analysis to represent these algebraic invariants as solutions of a Laplace equation on the geometric space in question. This is the subject of a mathematical theory named after the Scottish mathematician William Hodge.

What happens when the geometric structure degenerates and space becomes singular? A central question with multiple links to physics by its nature.

Dans ce modal, nous explorons la notion de pavages, et à travers elle celle de groupes et d'actions de groupes. Nous aborderons les résultats classiques de Bieberbach sur les pavages réguliers du plans, les fameux pavages apériodiques de Penrose, et les pavages affines du plan. 

Références :

Pavage du plan, notes d’un mini cours donné à l’École polytechnique

 http://www.math.polytechnique.fr/xups/xups01.01.pdf

 Langue du cours : Français

 




In this modal, we'll explore the notion of tessellation(or tiling), and through this, that of groups and actions of groups. We'll tackle Bieberbach's classic results on regular tessellations of the plane, Penrose's famous aperiodic tessellations, and affine tessellations of the plane.

References:

Tessellations of the plane, notes from a mini-course given at the École Polytechnique

 http://www.math.polytechnique.fr/xups/xups01.01.pdf


Course language: French