Enrolment options

La théorie de Galois est née au XIX ème siècle pour étudier l'existence de formules pour les solutions d'une équation polynômiale (en fonction des coefficients de l'équation). Cette théorie, à la fois puissante et élégante, fut à l'origine d'un pan entier de l'algèbre moderne, et a depuis connu un développement considérable. Elle demeure un sujet de recherche extrêmement actif.

L'objet de ce cours est dans un premier temps d'introduire les bases et outils d'algèbre générale (groupes, anneaux, algèbres, quotients, extensions de corps...) qui permettront dans un deuxième temps de développer la théorie de Galois, ainsi que certaines de ses applications les plus remarquables.

Au delà de l'intérêt propre du sujet, le cours se veut être une bonne introduction à l'algèbre et à ses diverses applications, tant en mathématiques que dans d'autres disciplines (informatique avec les corps finis, physique ou chimie avec la théorie des groupes par exemple).

* les pré-requis :
Algèbre linéaire classique enseigné en classes préparatoires ou pendant deux premières années d'université.

* les acquis attendus en fin de module
Acquis théoriques :

- Connaissance des structures fondamentales de l'algèbre générale.
- Compréhension des concepts fondamentaux de la théorie de Galois (extensions galoisiennes, groupes de Galois)
- Maîtrise des exemples les plus importants (corps finis, extensions cyclotomiques, extensions résolubles).
- Maîtrise des principales applications historiques (résolubilité des équations polynômiales, constructibilité des polygônes réguliers).

Acquis pratiques :

- Manipulation des structures algébriques fondamentales, calcul de degrés d'extensions.
- Détermination du caractère galoisien d'une extension.
- Calcul de groupes de Galois, notamment par réduction modulo p.
- Applications de la théorie, notamment en théorie des nombres et des corps.

* les modalités d'évaluations des acquis du module


- un contrôle classant en fin du cours
- un devoir maison

Langue du cours : Français





Galois theory emerged in 19th century to study the existence of formulas for solutions of polynomial equation (in terms of the coefficients of the equation). The theory is both powerful and elegant and was the origin of a very large part of modern algebra. Nowadays it is also a very active research field.

The aim of this course is first to introduce basics and tools of general algebra (groups, rings, algebras, quotients, field extensions...) which will allow in the second part of the course to develop Galois theory, as well as some of its most remarkable applications.

Beyond the the interest on the subject for itself, the course aims at being a good introduction to algebra and its applications, in Mathematics and in other fields (for instance Computer science with finite fields, Physics and Chemistry with group theory).

 

*Prerequisites

Standard linear algebra from the first two years at University.


* Knowledge expected at the end of the course : 

 

Theoretical knowledge :

- Knowledge of fundamental structures in general algebra.

- Knowledge of fundamental concepts in Galois theory (Galois extensions, Galois group)

- Most important examples (finite fields, cyclotomic extensions solvable extensions).

- Main historical applications (solvable polynomial equations, constructability of regular polygons).

 

Practical knowledge :

- Handling of fundamental algebraic structures, computation of degrees of extensions.

- Characterization of Galois extensions.

- Computation of Galois groups, method of reduction modulo p.

- Applications of the theory, in particular to number theory and fields theory

 

* Evaluation : exam at the end of the course.and one homework

 

Language  : French

Guests cannot access this course. Please log in.