Enrolment options

PHY573A – Micro and Nano electronics Experimental Design

This experimental project proposes to address education, with a close approach to the profession of engineer in R & D project, current and future technologies used in micro and nanoelectronics. The projects will be carried out in pairs and offer great freedom in the issues addressed. Three themes will potentially be offered to the students' choice:

  • FPGA programmable logic circuits

This course is devoted to the design and effective implementation of a synchronous logic circuit, in the form of a programming project carried out in pairs, using a platform based on reconfigurable circuits (FPGA: Field-Programmable Gate Arrays). Examples of projects already carried out: digital watch, microprocessor, digital oscilloscope, audio synthesizer, MD5 coprocessor, video controller.

 

  • Nanocomponents based on carbon nanotubes

The objective of this experimental module is to implement the design of transistor based on carbon nanotubes. In more detail, the synthesis of carbon nanotubes by CVD approach, the characterization of the latter (SEM and TEM microscopy) and finally the design and characterization of transistors based on these nanotubes will be discussed here. Part of this experimental project will be carried out in the THALES clean room.

 

  • Instrumentation electronics: design of an NMR spectrometer

The objective of this experimental teaching is to design, by a block diagram approach, a small but functional NMR spectrometer based on the physical principle of Nuclear Magnetic Resonance. Students will thus approach the multiple concepts of electronics (micro-processing, impedance matching, reflection, very low noise measurements, Radio Frequency electronics, modulation, ...) around a Nuclear Magnetic Resonance spectrometry bench. The student personalizes his project by developing one of the many themes around this NMR instrumentation: the design/or use of digital circuits based on ARM microcontrollers and/or FPGA devices (works are done on Mbed, Arduino, Redpitaya, Altera…  development boards), the design of analog electronics Radio Frequency or Low Frequencies boards, physical measurements (chemical shift, relaxation time, diffusion ...), numerical simulation, signal processing, noise measurement (noise factor), evolution towards MRI (1D) imaging.


Numerus clausus: 20

Assessment methods: Oral presentation and written report

Course language : French or English
no prerequisites

Guests cannot access this course. Please log in.