Enrolment options

This course is organized with both Applied Mathematics and Mathematics departments and is also referenced MAT567.

The aim of this course is to present models of transport and particle diffusion used in various relevent application fields on the energy plan. The chain reaction mechanism in nuclear sectors, greenhouse effect in climatology, radiative transfer in thermics or astrophysics, some models of structured population dynamics in biology, to quote only a few examples, involves this type of models.

After a mathematical presentation of these models, we will show that diffusion is the limit of transport in a strongly collisional , and we will explain the critical mass or size notio. We will introduce finite-differences and Monte-Carlo digital resolution methods.

 

Bibliography:

  • Dautray R., (1989). Méthodes probabilistes pour les équations de la physique, Eyrolles, Paris
  • Dautray R., Lions J.-L., (1988). Analyse mathématique et calcul numérique pour les sciences et les techniques, Masson, Paris
  • Perthame B., (2007). Transport equations in biology, Birkhäuser, Bâle
  • Planchard J. (1995). Méthodes mathématiques en neutronique. Collection de la Direction des Études et Recherches d'EDF, Eyrolles.
  • Pomraning G., (1973). The equations of radiation hydrodynamics, Pergamon Press. Oxford, New-York
Guests cannot access this course. Please log in.