This course introduces students to the Lagrangian and Hamiltonian mechanics. Starting from the concepts of Newtonian mechanics, the course extends these concepts to a more systematic description of the mechanics, adapted to complex systems. The course mostly use examples from the dynamics and vibrations of mechanical systems, with progressively increasing complexity. Examples from other fields of physics will be also proposed (electromagnetism, astrophysics, chaos…)


After a reminder of the classical concepts of point mechanics, the course extends these concepts to the Lagrangian formalism and to the least action principle. The Lagrangian formalism will be used to describe the mechanics of rigid bodies. Lagrangian formalism will then be extended to the Hamiltonian mechanics which is at the core of quantum physics and other modern theories in physics.

 

We will also present some extensions of Lagrangian and Hamiltonian mechanics to other fields of physics. Upon completion of this course, students master equations and principles in analytical mechanics. They will be able to discuss the relevance of the chosen model, as well as derive and solve simple models taken from their environment.