Le but de cet enseignement est de fournir une initiation à la recherche et développement en mathématiques appliquées, à travers la réalisation d’un projet.
Le projet consiste en l’étude d’un problème, motivé par les applications ou des
questions de nature mathématique, allant de la modélisation à l’implémentation
numérique et à l’analyse critique des résultats. Ce projet est effectué en binôme ou en trinôme, et constitue un véritable travail d’équipe.
L'évaluation sera basée sur la remise de deux rapports écrits et sur deux présentations orales, à mi-parcours puis à la fin du projet.
- Teaching coordinator: Breden Maxime
- Teaching coordinator: Gaubert Stéphane
- Teaching coordinator: Lehalle Charles-Albert
- Teaching coordinator: Lelievre Tony
- Teaching coordinator: Rey Clément
- Teaching coordinator: Rosenbaum Mathieu
- Teaching coordinator: Gouarin Loïc
Machine learning is a scientific discipline that is concerned with the design and development of algorithms that allow computers to learn from data. A major focus of machine learning is to automatically learn complex patterns and to make intelligent decisions based on them. The set of possible data inputs that feed a learning task can be very large and diverse, which makes modelling and prior assumptions critical problems for the design of relevant algorithms.
This course aims to complement the first Machine Learning course.
- Teaching coordinator: Capitaine Aymeric
- Teaching coordinator: Durmus Alain
- Teaching coordinator: Goudenege Ludovic
- Teaching coordinator: Le Pennec Erwan
- Teaching coordinator: Mangold Paul
- Teaching coordinator: Michel Manon
- Teaching coordinator: Simsekli Umut
- option prices (on large equity index such as SP500), reconstruction of forward and discount factor from put-call parity.
- Black Scholes formula with some justification (without continuous time stochastic calculus), computation of implied volatilities (bisection method, Newton method).
- Static no-arbitrage conditions on option prices and implied volatilities, fitting of a parametric implied volatility smile (SVI, SSVI).
- Teaching coordinator: De Marco Stéfano
- Teaching coordinator: Garcin Matthieu
Langue du cours : Anglais
- Teaching coordinator: Colazzo Dario
- Teaching coordinator: Durmus Alain