Ce cours est une introduction à la géométrie algébrique et à la géométrie arithmétique à travers l'exemple des courbes elliptiques, c'est-à-dire des courbes projectives planes non singulières définies par une équation de degré 3. Une propriété remarquable de ces courbes elliptiques est que leurs ensembles de points peuvent être munis d'une loi de groupe. La première partie du cours sera consacrée à la présentation du langage des variétés algébriques, plus précisément au théorème des zéros de Hilbert et à la géométrie projective. Quelques exemples du théorème d'intersection de Bezout seront étudiés. La seconde partie sera consacrée aux propriétés des courbes algébriques planes et plus particulièrement des courbes elliptiques. Les propriétés des courbes elliptiques seront étudiées sur différents corps : sur le corps des nombres complexes, où les courbes elliptiques s'identifient à des quotients de C par des réseaux; sur les corps finis, avec le théorème de Hasse qui donne une estimation du nombre de points de ces courbes elliptiques; et sur le corps des nombres rationnels, avec le célèbre théorème de Mordell. L'étude des courbes elliptiques sur les corps finis sera illustrée de quelques applications, à la cryptographie et aux algorithmes de factorisation. Dans le cas du corps des nombres rationnels, quelques exemples concrets où le groupe des points rationnels est déterminable seront étudiés. 

 

Bibliographie

  1. 1. J. H. Silverman, Arithmetic of elliptic curves. Graduate Texts in Mathematics, 106. Springer-Verlag, New York, 1986.
  2. L. C. Washington, Elliptic curves, Number theory and cryptography. Second edition. Discrete Mathematics and its Applications, Chapman & Hall/CRC, Boca Raton, FL, 2008.
  3. M. Hindry, Arithmétique, Calvage & Mounet, Cambridge University Press, 2008.
  4. J. H. Silverman et J. Tate, Rational points on elliptic curves, Springer-Verlag, New York, 1992.

Niveau requis : Il est  fortement conseillé d'avoir manipulé les objets algébriques de base (algèbre linéaire, groupes, anneaux, corps, notion de quotient) et, notamment, d’avoir validé le cours MAT 451 (Algèbre et théorie de Galois).

Langue du cours : Français ou Anglais




This course in an introduction to algebraic geometry and arithmetic geometry through the example of elliptic curves, that is non-singular plane projective curves given by a degree 3 equation. A remarkable property of elliptic curves is the existence of a group law on its set of solutions. The first part of the course will be dedicated to the the introduction of the language of algebraic varieties, and more precisely to Hilbert's Nullstellensatz and to projective geometry. Some examples related to Bezout's intersection theorem will be studied. The second part of the course will be dedicated to the properties of plane projective curves and more precisely of elliptic curves. The properties of elliptic curves will be studied over various fields: over the complex numbers, where elliptic curves can be identified to quotients of C by lattices; over finite fields, with Hasse's theorem which provides a bound on the number of points of such elliptic curves; and over the rational numbers, with the celebrated theorem of Mordell. The study of elliptic curves over finite fields will be illustrated with some applications to cryptography and to factoring algorithms. In the case of the field of rational numbers, some explicit examples in which the group of rational points can be computed will be studied.

Bibliography

  1. 1. J. H. Silverman, Arithmetic of elliptic curves. Graduate Texts in Mathematics, 106. Springer-Verlag, New York, 1986.
  2. L. C. Washington, Elliptic curves, Number theory and cryptography. Second edition. Discrete Mathematics and its Applications, Chapman & Hall/CRC, Boca Raton, FL, 2008.
  3. M. Hindry, Arithmétique, Calvage & Mounet, Cambridge University Press, 2008.
  4. J. H. Silverman et J. Tate, Rational points on elliptic curves, Springer-Verlag, New York, 1992.

Level required: It is advisable to have already manipulated basic algebraic structures (linear algebra, groups, rings, fields, quotients...). In particular, it is recommended to have succcessfully followed the Galois theory course (MAT451).

Language of the course: French or English