La théorie spectrale des opérateurs auto-adjoints en dimension infinie est étonnamment plus subtile que celle des matrices hermitiennes en dimension finie. Pourtant, de nombreux problèmes physiques ou mécaniques se ramènent à la résolution d'un problème aux valeurs propres dont l'inconnue est une fonction, ou à une équation aux dérivées partielles linéaire qui peut être étudiée avec des méthodes spectrales. Développée par Hilbert à la fin du 19ème siècle, la théorie spectrale a connu une envolée après la construction de la mécanique quantique et de l'équation de Schrödinger dans les années 1920-30, avec en particulier les travaux de Stone et de Von Neumann. Dans ce cours, nous verrons les bases de la théorie spectrale des opérateurs auto-adjoints en dimension infinie, et nous donnerons quelques applications choisies à la mécanique quantique, avec une attention particulière aux opérateurs décrivant les atomes et les molécules.
Bibliographie
Polycopié en français distribué aux élèves
M. Lewin, Théorie spectrale et mécanique quantique, Série Mathématiques et Applications (SMAI), Springer International Publishing, 2022
M. Lewin, Spectral theory and quantum mechanics, Universitext, Springer International Publishing, 2024
B. Davies, Spectral theory and differential operators, Cambridge Univ. Press, 1995
M. Reed, B. Simon, Methods of Modern Mathematical Physics. Volumes I, II et IV/. Academic Press, 1978.
Niveau requis
- éléments d’analyse de Fourier et de la théorie des distributions
- des connaissances préalables en mécanique quantique pourront aider, mais ne sont pas nécessaires pour suivre le cours
Langue du cours : Français
- Responsable: Lewin Mathieu