Chemical compounds or molecules are first of all matter, that was born from the Big bang energy, with the help of the Higgs boson, and successive huge compressions and temperature increases, which led to fill the Mendeleiev stall over billion years. Life kept up the job, thanks to DNA molecules made of the elemental bricks H O C N ; despite several tremendous extinctions, Life managed to store carbon dioxide, to fuel with oxygen, to come on terra firma, and invent polymers a long time before us.
Nowadays, based on the extensive use of fossil - coal, oil, gas, then nuclear fuels, with an increasing contribution of renewable energy (RE) - hydroelectricity, PV and wind farms, the process industry is able to provide us not only chemicals, such as drugs, fertilizers and dyes, polymers, energy vectors, but also drinkable water, food, cosmetics, glass, batteries... and smartphones.
The career of a new inorganic or organic product - a drug for instance - most of time begins at lab-scale: this is the "synthesis" step. Once its end-of-use property is assessed, Process Engineering (PE) appears on stage to build up and manage plants which will yield it from raw materials and energy and bring it to market, with a minimum production cost and a reduced environmental footprint. More, R&I in Process Engineering is requested to develop techniques as fast as possible for the respect of the environment, circular economy, and RE production, use and storage : VOC capture, polymer recycling, methanisation, hydrogen fuelled cars for instance.
Expected knowledge : be able to make the inventory of the data required for the design of a unit operation, set up its equation of performance, and calculate its efficiency.
Course Language: English or French, on demand
- Profesor: Gacoin Thierry