Les composés chimiques ou les molécules sont avant tout de la matinère, par l'énergie du Big Bang, du boson de Higgs et des immenses compressions et augmentations de température successives, ce qui a permis de remplir le tableau de Mendeleïev pendant des milliards d'années. La vie s'est maintenue grâce aux molécules d'ADN, constituées des éléments chimiques H O C N. Malgré de plusieurs extinctions importantes, la Vie est parvenue à stocker du dioxyde de carbone, à alimenter en oxygène, à venir sur la terre ferme et inventer les polymères bien avant nous.

De nos jours, en raison de l'utilisation intensive des énergies fossiles (), de l'hydroélectricité, des énergies photovoltaïques et des parcs éoliens, le processus industriel est capable de nous fournir des produits chimiques comme des médicaments, des fertilisants, des colorants, des polymères, des vecteurs énergétiques, mais aussi de l'eau potable, de la nourriture, des produits cosmétiques, des piles... et des smartphones.

La formation d'un nouveau produit inorganique ou organique, un médicament par exemple, commence la plupart du temps à l'échelle du laboratoire : il s'agit de l'étape de "synthèse". Une fois sa proprité d'utilisation finale estimé, le génie chimique apparaît au stade de l'élaboration et de gestion des usines qui vont la produire à partir de matières premières et d'énergie et l'amèneront sur le marché, avec un minimum de cout de production et une empreinte environnementale réduite. De plus, la R&I dans le génie chimique est nécessaire pour développer le plus rapidement possible des techniques respectueuses de l'envrionnement, de l'économie circulaire et de la production, de l'utilisation de stockage : capture de COV, recyclage de polymères, méthanisation ou voitures fonctionnant à l'hydrogène, par exemple.

Connaissances attendues : être capable de faire l'inventaire des données nécessaire à la conception d'une opération unitaire, d'établir son équation de performance et de calculer son rendement.

 

Langue du cours : anglais ou français, à la demande




Chemical compounds or molecules are first of all matter, that was born from the Big bang energy, with the help of the Higgs boson, and successive huge compressions and temperature increases, which led to fill the Mendeleiev stall over billion years. Life kept up the job, thanks to DNA molecules made of the elemental bricks H O C N ; despite several tremendous extinctions, Life managed to store carbon dioxide, to fuel with oxygen, to come on terra firma, and invent polymers a long time before us.

Nowadays, based on the extensive use of fossil - coal, oil, gas, then nuclear fuels, with an increasing contribution of renewable energy (RE) - hydroelectricity, PV and wind farms, the process industry is able to provide us not only chemicals, such as drugs, fertilizers and dyes, polymers, energy vectors, but also drinkable water, food, cosmetics, glass, batteries... and smartphones.

The career of a new inorganic or organic product - a drug for instance - most of time begins at lab-scale: this is the "synthesis" step. Once its end-of-use property is assessed, Process Engineering (PE) appears on stage to build up and manage plants which will yield it from raw materials and energy and bring it to market, with a minimum production cost and a reduced environmental footprint. More, R&I in Process Engineering is requested to develop techniques as fast as possible for the respect of the environment, circular economy, and RE production, use and storage : VOC capture, polymer recycling, methanisation, hydrogen fuelled cars for instance.  

Expected knowledge : be able to make the inventory of the data required for the design of a unit operation, set up its equation of performance, and calculate its efficiency.

 

Course Language: English or French, on demand