Biomechanics in health and disease
Biomechanics is the application of mechanics to biological and/or biomedical systems. Over the last twenty years, mechanical stresses have been identified as a key player in the regulation of physiological functioning and in the development of several pathologies such as cardiovascular diseases, cancers, glaucoma and diabetes. Mechanical considerations are also essential for the design and development of devices and therapies that target these pathologies. The role of mechanics extends from the molecular scale to the whole-tisuue scale. This course will present fundamental aspects of macroscopic and microscopic biomechanics and will discuss the role of mechanics in physiology and pathology.
The course consists of lectures and research projects conducted by students. The lectures will focus on the following topics: 1) tissue-scale mechanics with emphasis on fluid mechanics, solid mechanics, and mass transport; 2) mechanics at the cellular level with a focus on cell behavior patterns and cell mechanotransduction; 3) the role of mechanics in the development and progression of diseases such as cardiovascular disease, cancer, and glaucoma; and 4) mechanical considerations in the design and development of medical devices and therapeutic approaches. Student-led projects will be research projects that will advance knowledge in a field related to the role of mechanics in physiology and pathology. These projects may be of a theoretical, numerical or experimental nature. Students will present their results at the end of the term. They will also have the opportunity to visit laboratories in the Paris region working in these fields.
Prerequisites: Basic knowledge in fluid and solid mechanics. There is no biology prerequisite.
Evaluation modality: Students are evaluated on the basis of the research projects and the final oral presentations
Course language: English
- Profesor: Barakat Abdul