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Chapter 1

Reminders of QFT 1

1.1 Special relativity

1.1.1 Lorentz transformations

Special relativity plays a crucial role in quantum field theories'. Various observers in frames
that are moving at a constant speed relative to each other should be able to describe physical
phenomena using the same laws of Physics. This does not imply that the equations governing
these phenomena are independent of the observer’s frame, but that these equations transform in
a constrained fashion —depending on the nature of the objects they contain— under a change of
reference frame.

Let us consider two frames & and F’, in which the coordinates of a given event are respec-
tively x* and x *. A Lorentz transformation is a linear transformation such that the interval
ds? = dt? — dx? is the same in the two frames?. If we denote the coordinate transformation by

R ALY (L.1)
the matrix A of the transformation must obey

gy = A¥oAY 5 gP? (1.2)
where g, is the Minkowski metric tensor

+1

-1
uv = » : (1.3)

—1

! An exception to this assertion is for quantum field models applied to condensed matter physics, where the basic
degrees of freedom are to a very good level of approximation described by Galilean kinematics.

2The physical premises of special relativity require that the speed of light be the same in all inertial frames, which
implies solely that ds? = 0 be preserved in all inertial frames. The group of transformations that achieves this is
called the conformal group. In four space-time dimensions, the conformal group is 15 dimensional, and in addition to
the 6 orthochronous Lorentz transformations it contains dilatations as well as non-linear transformations called special
conformal transformations.
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If we consider an infinitesimal Lorentz transformation,

AM, =84, + wHy, (1.4
(with all components of w much smaller than unity), this implies that

Wy = —Wyy (1.5)

(with all indices down). Consequently, there are 6 independent Lorentz transformations, three
of which are ordinary rotations and three are boosts. Note that the infinitesimal transforma-
tions (1.4) have a determinant’® equal to +1 (they are called proper transformations), and do
not change the direction of the time axis since A°y = 1 > 0 (they are called orthochronous).
Any combination of such infinitesimal transformations shares the same properties, and their set
forms a subgroup of the full group of transformations that preserve the Minkowski metric.

1.1.2 Representations of the Lorentz group

More generally, a Lorentz transformation acts on a quantum system via a transformation U(A),
that forms a representation of the Lorentz group, i.e.

U(AA') = U(A)U(A) . (1.6)

For an infinitesimal Lorentz transformation, we can write
i
U(]—i—w):l—i—EwwM“V . (1.7)

(The prefactor i/2 in the second term of the right hand side is conventional.) Since the w . are
antisymmetric, the generators M"Y can also be chosen antisymmetric. By using eq. (1.6) for
the Lorentz transformation A~ ' A’A, we arrive at

U " (AMMYU(A) = AH LAY sMPO (1.8)

indicating that M"Y transforms as a rank-2 tensor. When used with an infinitesimal transforma-
tion A = 1 + w, this identity leads to the commutation relation that defines the Lie algebra of
the Lorentz group

[MEY,MP9] = i(g"P MY — gYPMH7) — i(g"TM™® — gYTMH?) . (1.9)
In a fashion similar to eq. (1.8), we can obtain the transformation of the 4-impulsion P*,
U™ (A)PHU(A) = AH,PP | (1.10)
which leads to the following commutation relation between P* and M"Y,

[Pu’MpU] =1{(g"TPP — g"PP?) . (1.11)

A scalar field ¢(x) is a (number or operator valued) object that depends on a spacetime
coordinate x and is invariant under a Lorentz transformation, except for the change of coordinate
induced by the transformation:

U (A)d()UA) = d(AX) . (1.12)

3From eq. (1.2), the determinant may be equal to %1.
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This formula just reflects the fact that the point x where the transformed field is evaluated was
located at the point A~'x before the transformation. The first derivative 9" ¢ of the field trans-
forms as a 4-vector,

U (A)*P()U(A) = A* Y d(A x) (1.13)

where the bar in 9" indicates that we are differentiating with respect to the whole argument of
&, i.e. A~ 'x. Likewise, the second derivative 0H0Y ¢ transforms like a rank-2 tensor, but the
D’ Alembertian [l¢ transforms as a scalar.

1.2 Free scalar fields, Mode decomposition

1.2.1 Quantum harmonic oscillators

Let us consider a continuous collection of quantum harmonic oscillators, each of them corre-
sponding to particles with a given momentum P These harmonic oscillators can be defined by
a pair of creation and annihilation operators ap, ap, where p is a 3-momentum that labels the
corresponding mode. Note that the energy of the particles is fixed from their 3-momentum by
the relativistic dispersion relation,

PP =Ep,=Vp2+m2. (1.14)

The operators creating or destroying particles with a given momentum p obey usual commuta-
tion relations,

[ap,ap] = [aL,aH =0, [ap,aH ~1. (1.15)

(in the last commutator, the precise normalization will be defined later.) In contrast, operators
acting on different momenta always commute:

[ap, aq] = [a}, af] = [ap,af] =0. (1.16)

If we denote by H the Hamiltonian operator of such a system, the property that a;', creates

a particle of momentum p (and therefore of energy E,) implies that

[#,al,] = +Epal, . (1.17)
Likewise, since ap destroys a particle with the same energy, we have

[H,ap] =—Epap . (1.18)

(Implicitly in these equations is the fact that particles are non-interacting, so that adding or
removing a particle of momentum p does not affect the rest of the system.) In these lectures, we

will adopt the following normalization for the free Hamiltonian®,
d3p
'
%__J(zﬂPZEp E, (ahap, +VEp), (1.19)

“In a relativistic setting, the measure d3p / (27r)32Ep has the important benefit of being Lorentz invariant. Moreover,
it results naturally from the 4-dimensional momentum integration d*p/(27)* constrained by the positive energy mass-
shell condition 27t 8(p®) 5(p? — m2).
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where V is the volume of the system. To make contact with the usual treatment® of a harmonic
oscillator in quantum mechanics, it is useful to introduce the occupation number fp, defined by,

2E, Vi, =ala, . (1.20)
In terms of f},, the above Hamiltonian reads
d’p 1
:HZVJ(ZTPEP (fp+3) - (1.21)

The expectation value of f}, has the interpretation of the number of particles par unit of phase-
space (i.e. per unit of volume in coordinate space and per unit of volume in momentum space),
and the 1/2in f, + % is the ground state occupation of each oscillator®. Of course, this additive
constant is to a large extent irrelevant since only energy differences have a physical meaning.
Given eq. (1.19), the commutation relations (1.17) and (1.18) are fulfilled provided that

[ap,al] = (2m)° 2E, 8(p— q) . (1.22)

1.2.2 Scalar field operator, Canonical commutation relations

Note that in quantum mechanics, a particle with a well defined momentum p is not localized at
a specific point in space, due to the uncertainty principle. Thus, when we say that aJ{, creates a
particle of momentum p, this production process may happen anywhere in space and at any time
since the energy is also well defined. Instead of using the momentum basis, one may introduce
an operator that depends on space-time in order to give preeminence to the time and position
at which a particle is created or destroyed. It is possible to encapsulate all the a, aL into the
following Hermitean operator’

a’p

d(x) = J(Zn)32Ep [al e™ P+ a, e ] (1.23)

P
where p - x = px* with p° = +Ep. In the following, we will also need the time derivative of
this operator, denoted TT(x),

3 . .
d’p Ep [al e™™PX —a,e P . (1.24)

U(X) = a()d)(x) = 1J m P P
P

5In relativistic quantum field theory, it is customary to use a system of units in which i = 1, ¢ = 1 (and also
kg = 1 when the Boltzmann constant is needed to relate energies and temperature). In this system of units, the action
8 is dimensionless. Mass, energy, momentum and temperature have the same dimension, which is the inverse of the
dimension of length and duration:

[mass] = [energy] = [momentum] = [temperature] = [length’l ] = [durationq ] .
Moreover, in four dimensions, the creation and annihilation operators introduced in eq. (1.19) have the dimension of an
inverse energy:

[ap] = [ap] = [eneray "]

(the occupation number fp is dimensionless.)

This is reminiscent of the fact that the energy of the level n in a quantized harmonic oscillator of base energy w is
En=(Mn+ %)w.

7In four space-time dimensions, this field has the same dimension as energy:

[c])(x)] = [energy] .
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Given the commutation relation (1.22), we obtain the following equal-time commutation rela-
tions for ¢ and TT,

[d)(x))(b(y)]xo:yo = [H(X%”(U)}Xo:yo =0, [d)(x))n(y)]xozyo =1(x—y). (1.25)

These are called the canonical field commutation relations. In this approach (known as canonical
quantization), the quantization of a field theory corresponds to promoting the classical Poisson
bracket between a dynamical variable and its conjugate momentum to a commutator:

{Pi, Q]} = 51)' — [ﬁi, Q]] = 1]’_151) . (126)

In addition to these relations that hold for equal times, one may prove that ¢(x) and TT(y)
commute for space-like intervals (x —y)? < 0. Physically, this is related to the absence of
causal relation between two measurements performed at space-time points with a space-like
separation.

It is possible to invert eqs. (1.23) and (1.24) in order to obtain the creation and annihilation
operators given the operators ¢ and T1. These inversion formulas read

al, = —iJ d*x e P [TT(x) +iEpd(x)] = —iJ dBx e P g

<9
S

<
¥

ap = +1J d*x e [T(x) — iEpd(x)] = —HJ d3x etiPx 55 d(x), (1.27)

—
where the operator 0y is defined as

A Do B =A (00B) — (9,A) B . (1.28)

Note that these expressions, although they appear to contain x°, do not actually depend on time.
Using these formulas, we can rewrite the Hamiltonian in terms of ¢ and IT,

9 = J Ex {1 (x) + (V) + Im?¢2(x)} . (1.29)

From this Hamiltonian, one may obtain equations of motion in the form of Hamilton-Jacobi
equations. Formally, they read

5K
0(x) = s =Tlx)
doTT(x) = _5;);}(1) - (V2 _ mz) dx) . (1.30)

1.2.3 Lagrangian formulation

One may also obtain a Lagrangian £(d, 0o¢) that leads to the Hamiltonian (1.29) by the usual
manipulations. Firstly, the momentum canonically conjugated to ¢ (x) should be given by
8L
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For this to be consistent with the first Hamilton-Jacobi equation, the Lagrangian must contain
the following kinetic term

L= Jd3x T @odp(x))* +- - (1.32)
The missing potential term of the Lagrangian is obtained by requesting that we have

J{:Jd3x T(x)dod(x) — £ . (1.33)
This gives the following Lagrangian,

L= jd%c (10,b()) (@4 (x) — Tm2p2(x)) . (134)
Note that the action.
5 :deo L, (1.35)

is a Lorentz scalar (this is not true of the Hamiltonian, which may be considered as the time
component of a 4-vector from the point of view of Lorentz transformations). The Lagrangian
(1.34) leads to the following Euler-Lagrange equation of motion,

(Ox +m?) d(x) =0, (1.36)

which is known as the Klein-Gordon equation. This equation is of course equivalent to the pair
of Hamilton-Jacobi equations derived earlier.

1.3 Interacting scalar fields, Interaction representation

1.3.1 Interaction term

Until now, we have only considered non-interacting particles, which is of course of very limited
use in practice. That the Hamiltonian (1.19) does not contain interactions follows from the
fact that the only non-trivial term it contains is of the form aL ap, that destroys a particle of
momentum p and then creates a particle of momentum p (hence nothing changes in the state of
the system under consideration). By momentum conservation, this is the only allowed Hermitian
operator which is quadratic in the creation and annihilation operators. Therefore, in order to
include interactions, we must include in the Hamiltonian terms of higher degree in the creation
and annihilation operators. The additional term must be Hermitean, since J{ generates the time
evolution, which must be unitary.

The simplest Hermitean addition to the Hamiltonian is a term of the form

H, = J'dSX A'd)n(x) ) (1.37)
n.

where n is a power larger than 2. The constant A is called a coupling constant and controls
the strength of the interactions, while the denominator n! is a symmetry factor that will prove
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convenient later on. At this point, it seems that any degree n may provide a reasonable interac-
tion term. However, theories with an odd n have an unstable vacuum, and theories with n > 4
are non-renormalizable in four space-time dimensions, as we shall see later. For these reasons,
n = 4 is the only case which is widely studied in practice, and we will stick to this value in the
rest of this chapter.

With this choice, the Hamiltonian and Lagrangian read
3 = | @x {31200 + H(To0x)2 + Ime20x) + 340}
L= Jd3x {200ub(x)) (% b(x) — 3m*d* (x) — b ()} (1.38)
and the Klein-Gordon equation is modified into

(Dx+m2)¢(x)+%¢3(x) =0. (1.39)

1.3.2 Interaction representation

A field operator that obeys this non-linear equation of motion can no longer be represented as a
linear superposition of plane waves such as (1.23). Let us assume that the coupling constant is
very slowly time-dependent, in such a way that

lim A=0. (1.40)

x0—+oo

What we have in mind here is that A goes to zero adiabatically at asymptotic times, i.e. much
slower than all the physically relevant timescales of the theory under consideration. Therefore,
at x° = +o0, the theory is a free theory whose spectrum is made of the eigenstates of the free
Hamiltonian. Likewise, the field ¢ (x) should be in a certain sense “close to a free field” in these
limits. In the case of the x° — —oo limit, let us denote this by8

Jim  ¢(x) = binlx) , (1.41)

XY ——00
where ¢j, is a free field operator that admits a Fourier decomposition similar to eq. (1.23),

dgp T +ip-x —ip-x
d)in(X) = Jm [ap’m e + ap,in e :| . (142)

Eq. (1.41) can be made more explicit by writing
b(x) = U(—00,x%) din(x) U(x®, —o0) (1.43)

where U is a unitary time evolution operator defined as a time ordered exponential of the inter-
action term in the Lagrangian, evaluated with the ¢y, field:

t2
U(ta, t1) ETexpiJ dx°d3x £, (pin(x)) , (1.44)

t

81n this equation, we ignore for now the issue of field renormalization, onto which we shall come back later (see the
section 1.8).
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where
L, (0(x) =~ ¢*(x). (1.45)
This time evolution operator satisfies the following properties
u(t,t) = 1
U(ts,t1) = Ul(ts,t2) Ulta,ty)  (forall tz)
U, t2) = U Mtz t1) = Ul (t, 1) (1.46)

One can then prove that
(Ox +m?)db(x) + 2493 (x) = U(=00,x°) [(Ox +m*)pn(x) | U, —00) . (147)

This equation shows that ¢y, obeys the free Klein-Gordon equation if ¢ obeys the non-linear
interacting one, and justifies a posteriori our choice of the unitary operator U that connects ¢
and ¢j,.

1.3.3 In and Out states

The in creation and annihilation operators can be used to define a space of eigenstates of the free
Hamiltonian, starting from a ground state (vacuum) denoted |Oin>. For instance, one particle
states would be defined as

|pin> = a];)‘in |Oin> . (148)
The physical interpretation of these states is that they are states with a definite particle content
at x° = —oo0, before the interactions are turned on”.

In the same way as we have constructed in field operators, creation and annihilation opera-
tors and states, we may construct out ones such that the field by (%) is a free field that coincides
with the interacting field ¢ (x) in the limit x° — +o0 (with the same caveat about field renor-
malization). Starting from a vacuum state |Oom>, we may also define a full set of states, such as
|p0ut>, that have a definite particle content at x® = 4o0. It is crucial to observe that the in and
out states are not identical:

|Oout> 75 |Oin> (they differ by the Phase <Oout’0in>) ) |pout> 7& ’pin> y (149)

Taking the limit x° — o0 in eq. (1.43), we first see that'”

Ap,out = U(—o00, +00) Ap.in U(+4o00, —00) , aL,out = U(—o00, +00) a;,in U (400, —00)
(1.50)

from which we deduce that the in and out states must be related by
|o‘out> = u(foo) +00) ‘(xin> . (1.51)

The two sets of states are identical for a free theory, since the evolution operator reduces to the
identity in this case.

9For an interacting system, it is not possible to enumerate the particle content of states, because of quantum fluctua-
tions that may temporarily create additional virtual particles.
10The evolution operator from x0 = —00 t0 X0 = 400 is sometimes called the S-matrix: S = U(+o00, —00).

10
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1.4 LSZ reduction formulas

Among the most interesting physical quantities are the transition amplitudes

(4142 ou[P1P2"*in) (1.52)

whose squared modulus enters in cross-sections that are measurable in scattering experiments.
Up to a normalization factor, the square of this amplitude gives the probability that particles
with momenta p;Pp, - - - in the initial state evolve into particles with momenta q;(, - - - in the
final state.

A first step in view of calculating transition amplitudes is to relate them to expectation
values involving the field operator ¢ (x). In order to illustrate the main steps in deriving such a
relationship, let us consider the simple case of the transition amplitude between two 1-particle
states,

(Qout|Pin) - (1.53)

Firstly, we write the state Ipin> as the action of a creation operator on the corresponding vacuum
state, and we replace the creation operation by its expression in terms of ¢jy,

<q0ut|pin> = <q0ut‘aL‘in|Oin>
- —in3x € P (o |TTin(x) + LEp bin ()] O3 - (1.54)

Next, we use the fact that dyy, ITj, are the limits when x° — —oo of the interacting fields ¢, T,
and we express this limit by means of the following trick:

+o00
lim F(x°)= lim F(xo)—J dx® 9,0 F(x°) . (1.55)

x0——o00 x0—+o0 oo

The term with the limit x° — oo produces a term identical to the r.h.s. of the first line of
eq. (1.54), but with an ai,’(,m instead of aL’in. At this stage we have

<q0ul|pin> = <00ul‘aq,oula;g,out’0in>
+i J d*x 950 € P (qou|TT(x) + iEp P (x)|Oin) - (1.56)

In the first line, we use the commutation relation between creation and annihilation operators to
obtain

{Oou| Qg ,0u@h ou| Oin) = (271)32E, 5(p — q) . (1.57)
This term does not involve any interaction, since the initial state particle simply goes through to

the final state (in other words, this particle just acts as a spectator in the process). Such trivial
terms always appear when expressing transition amplitudes in terms of the field operator, and

11
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they are usually dropped since they do not carry any interesting physical information. We can
then perform explicitly the time derivative in the second line to obtain'!

(Gou|Pin) = iJ d*x e P (Oy + m?) (Gou| d(x)[Oin) (1.58)

where we use the symbol = to indicate that the trivial non-interacting terms have been dropped.

Next, we repeat the same procedure for the final state particle: (i) replace the annihilation
operator aq out by its expression in terms of oy, (ii) write Goy as a limit of ¢ when x0 = 400,
(iii) write this limit as an integral of a time derivative plus a term at x° — —oo, that we rewrite
as the annihilation operator aq in:

<q0ut|pin> = iJ d'x e X (Ox + mZ) {<Oout|aq,in¢(x)|oin>

4 aty 0y0 €Y (00 (Tly) — iEqb(y) $0[0w) } - (1.59

However, at this point we are stuck because we would like to bring the a i, to the right where
it would annihilate |Oin>, but we do not know the commutator between a i, and the interacting
field operator ¢(x). The remedy is to go one step back, and note that we are free to insert a
T-product in

(Mow(y) — iEqdou(y)) d(x) = lim T ((M(y) —iEqd(y)) d(x)) (1.60)

y%—+oo

since the time y° — oo is obviously larger than x°. Then the boundary term at y° — —oo
will automatically lead to the desired ordering ¢ (x) aqin,

<qout’pin> = 1J d4X e*ipoc (Dx + mZ) {<Oout’¢(x) aq‘in’Oin>
——

0
+1Jd4y 0,0 €4 (O[T (TT(y) ~ LEq0b(y)) (x)[0)}
(1.61)

Performing the derivative with respect to y°, we finally arrive at
{Qou|Ppin) = i? J d*xd*y e VP (O, +m?)(Oy +m?) (Oou|T S (x)d(y) [0 ) . (1.62)

Such a formula is known as a (Lehmann-Symanzik-Zimmermann) reduction formula.

The method that we have exposed above on a simple case can easily be applied to the most
general transition amplitude, with the following result for the part of the amplitude that does not

"TWe use here the dispersion relation pé — p2 = m? of the incoming particle to arrive at this expression. The mass
that should enter in this formula is the physical mass of the particles. This remark will become important when we
discuss renormalization.

12



1. REMINDERS OF QFT I

involve any spectator particle:
m
<q1 gy, 0u[|p1 P in> - im+nJ'Hd4Xj e tPixi (Dxi + mZ)
i=1

X JH d4y)' et (Oy; + m?) <Oout|T¢(X1) o pem)Pyr) - ¢(yn)’01n> .

j=1
(1.63)

The bottom line is that an amplitude with m + n particles is related to the vacuum expectation
value of a time-ordered product of m + m interacting field operators (a slight but important
modification to this formula will be introduced in the section 1.8, in order to account for field
renormalization). Note that the vacuum states on the left and on the right of the expectation
value are respectively the out and the in vacua.

1.5 Generating functional

1.5.1 Definition

To facilitate the bookkeeping, it is useful to introduce a generating functional that encapsulates
all the expectation values, by defining

(oo}

Zfj] = Z %de‘x] s dxn 4(x1) 4 (xn) Oou| T (1) <+ b(xn)|Oin)
n=0
= (Oou|T expin4x () (x)]Oin ) - (1.64)
Note that
Z[0] = (Oou|Oin) # 1 (1.65)

in an interacting theory (but if the vacuum state is stable, then this vacuum to vacuum transition
amplitude must be a pure phase whose squared modulus is one). From this functional, the
relevant expectation values are obtained by functional differentiation
s"Z[j]
8j0c1) - 18 0en) |y

(Oou| T (x1) -+~ b (xn) |Om) = (1.66)

The knowledge of Z[j] would therefore give access to all the transition amplitudes. However,
it is in general not possible to derive Z[j] in closed form, and we need to resort to perturbation
theory, in which the answer is obtained as an expansion in powers of the coupling constant.

1.5.2 Relation between the free and interacting generating functionals

The generating functional can be brought to a more useful form by first writing

d(x1) - dlxn) = Ul=00,X9) Pin(x1) U(x],x3) bin(x2) - - - bin(xn) U(x7, 00) . (1.67)

13
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For convenience, we split the leftmost evolution operator as
U(—o00,x9) = U(—o00, +-00) U(400,x9) . (1.68)

Noticing that the formula (1.67) is true for any ordering of the times x? and using the expression
of the U’s as a time-ordered exponential, we have

Td(x1)- - dxn) = U(—00,+00) T din(x1) - - - din(xn) GXPin4X L, (din(x)), (1.69)

where the time-ordering in the right-hand side applies to all the operators on its right. This leads
to the following representation of the generating functional

Z[j]

(0o U0, +00) T expt [ a'x [((x)dun(x) + £, (ulx)) ] [Ow)
<0in
. 1)

= explj’d‘lxﬁI (iéj(x)) <Om|Texp1J x j(x) b (x |Om> (1.70)

Zo[j]

This expression of Z[j] is the most useful, since it factorizes the interactions into a (functional)
differential operator acting on Zo[j], the generating functional for the non-interacting theory.

1.5.3 Free generating functional

It turns out that the latter is calculable analytically. The main difficulty in evaluating Zo[j] is
to deal with the non-commuting objects contained in the exponential. A central mathematical
result that we shall need is a particular case of the Baker-Campbell-Hausdortf formula,

if [A,[A,B]l=[B,[A,B]l=0, eteP =¢rP ez MBI (1.71)

This formula is applicable to our problem because commutators [a, a'] are c-numbers that com-
mute with everything else. In order to apply it, let us slice the time axis into an infinite number
of small intervals, by writing

+oo i+l
T epr d*x O(x H T epr d*x O(x) , (1.72)
- i=—o00
where the intermediate times are ordered according to - - - x{ < x? 1 < ---. The product in the

right hand side should be understood with the convention that the factors are ordered from left
to right when the index i decreases. When the size A = x? = x(i) of these intervals goes to
zero, the time-ordering can be removed in the individual factors'?

+oo 400 x9
4 . i+1 4
T expLoo d*x O(x) = Ahjg# | I epr'Xo d*x O(x) . (1.73)
i=—o00 i

12Fjeld operators commute for space-like intervals,
[0x),0W)] =0 if (x—y)*<0.

0

Moreover, when A — 0, the separation between any pair of points x, y with x.lo <x%y° < Xi, 1 is always space-like.

14



1. REMINDERS OF QFT I

A first application of the Baker-Campbell-Hausdorff formula leads to

T expij d*x (%) bin(x) = exp {IJ d*x j(x)d)in(x)}
xexp{ - % J a'xd'y 00—y} i(x)j(y) [Gn(x), Pu(y)] } . (174)

Note that the exponential in the second line is a c-number. In the end, we will need to evaluate
the expectation value of this operator in the |Oin> vacuum state. Therefore, it is desirable to
transform it in such a way that the annihilation operators are on the right and the annihilation
operators are on the left. This can be achieved by writing

dinx) = O+ ol (%),

d3 -

3
(=) — d P . —ip-x
¢, (x) = J 7(27‘()32Ep Qp,in € , (1.75)

and by using once again the Baker-Campbell-Hausdorff formula. We obtain
T expiJ d*x §(x)bin (x) = exp {1J % joL 00} exp {1J il 00}

cexp {5 [ ahxaty i) [0 000l ()]}
cexp{ = 3 [ axdty 006~ 4 i00)iy) [Gnlx) bulw)]} - 176

The operator that appears in the right hand side of the first line is called a normal-ordered
exponential, and is denoted by bracketing the exponential with colons (: - - - :):

: expij d*x j(x)din(x) : = exp {IJ' d*x j(x)¢i(n+)(x)} exp {1J d*x j(x)d)i(n_)(x)} . (.77

A crucial property of the normal ordered exponential is that its in-vacuum expectation value is
equal to unity:

(O :expin“x i) din(x) : |0y =1 (1.78)

Therefore, we have proven that the generating functional of the free theory is a Gaussian in j(x),

Zalil = exp { — 5 [ atxaty jtulity) G x )} (1.79)

where Gf (x,y) is a 2-point function called the free Feynman propagator and defined as

GO(x,y) = 0(x® —yO) [bin(x), din(y)] — [b5 (%), b (y)] - (1.80)

15
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1.5.4 Feynman propagator

Since the commutators in the right hand side of eq. (1.80) are c-numbers, we can also write

GOx,y) = (0u|8(x® —yO) [din(x), din(y)] — [b (%), bl ()] [Ow)
<Oin|T¢in(X)¢in(y)|0in> . (1.81)

In other words, the free Feynman propagator is the in-vacuum expectation value of the time-
ordered product of two free fields. Using the Fourier mode decomposition of ¢;, and the com-
mutation relation between creation and annihilation operators, the Feynman propagator can be
rewritten as follows
GO(x,y) = J _&p {e(x" —y0) e P Y gy —x0) e“P'(X*‘J)} (1.82)
P09 23zE, Y Y -

In the following, we will also make an extensive use of the Fourier transform of this propagator
(with respect to the difference of coordinates x* — y*, since it is translation invariant):

G%(k)

[ty e 620y

“+00 0
- %{J dz0 et(k°—Ex)z’ +J az° e“k"*Ek)Z"} . (1.83)
k 0

—0o0

The remaining Fourier integrals over z° are not defined as ordinary functions. Instead, they are

distributions, that can also be viewed as the limiting value of a family of ordinary functions. In
order to see this, let use write

+o0 . o “+oo . . o 1
J dz°® e'%* = lim J dz0 etlatie)zs — = (1.84)
0 e—0" Jo a+1i0t
Likewise
0 0 ias® ) 0 0 ila—ie)z® i
dz0 etez” — hm+ dz° et a—ie)z” _ -7 (1.85)
oo e—=0+ | oo a—1i0

Therefore, the Fourier space Feynman propagator reads
i

—
60 = o

(1.86)
Note that G S(k) is Lorentz invariant. Henceforth, Gg(x,y) is also Lorentz invariant'3. It is
sometimes useful to have a representation of eq. (1.86) in terms of distributions. This is provided
by the following identity:

i A
o =P <Z> +75(z) , (1.87)

3This is somewhat obfuscated by the fact that the step functions 8(£(x° — y©)) that enter in the definition of
the time-ordered product are not Lorentz invariant. The Lorentz invariance of time-ordered products follows from the
following properties:

o if (x —y )2 < 0, then the two fields commute and the time ordering is irrelevant,

e if (x —y)? > 0, then the sign of x® — y° is Lorentz invariant.
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where P(1/z) is the principal value of 1/z (i.e. the distribution obtained by cutting out —
symmetrically— an infinitesimal interval around z = 0). As far as integration over the variable
z is concerned, this prescription amounts to shifting the pole slightly below the real axis, or
equivalently to going around the pole at z = 0 from above (the term in 7td(z) can be viewed as
the result of the integral on the infinitesimally small half-circle around the pole):

€ ©

-i0* 0

From eq. (1.86), it is trivial to check that Gf(x,y) is a Green’s function of the operator
O, + m? (up to a normalization factor —i):

(Ox +m?) GOx,y) = —ib(x —y) . (1.88)

Strictly speaking, the operator [J, 4+ m? is not invertible, since it admits as zero modes all the
plane waves exp(=ik - x) with an on-shell momentum k% = k?* + m?2. The i0* prescription in
the denominator of eq. (1.86) amounts to shifting infinitesimally the zeroes of k3 = k* +m? in
the complex kg plane, in order to have a well defined inverse. The regularization of eq. (1.86) is
specific to the time-ordered propagator. Other regularizations would provide different propaga-
tors; for instance the free retarded propagator is given by

Gl (ko +107)2 — (k* + m2) (159

One can easily check that its inverse Fourier transform is a function GOR (x,y) that satisfies

(Ox +TTLZ) GOR(X»U) = —15(X—U) )
Go(x,y) =0 ifx° <y°. (1.90)

In other words, G g is also a Green’s function of the operator [J, + m?, but with boundary
conditions that differ from those of GS

1.6 Perturbative expansion and Feynman rules

The generating functional Z[j] is usually not known analytically in closed form, but is given in-
directly by eq. (1.70) as the action of a functional differential operator that acts on the generating
functional of the free theory. The latter is a Gaussian in j, whose variance is given by the free
Feynman propagator GS. Although not explicit, this formula provides a straightforward method
for obtaining vacuum expectation values of T-products of fields to a given order in the coupling
constant A.

17
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1.6.1 Examples

Let us first illustrate this by computing to order A" the following two functions: (Oou|0in) and
(Oout| T b (x)$(y)|Oin)- In order to make the notations a bit lighter, we denote G¢,, = G2 (x, y).
At order one in A, we have

A 5 \* .
(Oou|0sn) = Z[0] = l] —147Jd47, (161(7-)) +O(7\2)1 Zo[jll;_o
- 1—i%Jd4z G2+ 0\, (1.91)

and

5
15j(z) i25§(x)5j(y)

Jd“z GoZ—1 % J d*z GY,G2, G2, + O(A\?)

>4+ O(A?) 82Zo[]
j=0

A

_ 0 - ~0

—ny—lnyg

- [1 —i%J'd“z GQ}+O(A2)}

Z[0]

<[, —%Jd“z 62,6263, + 0] . (1.92)
Although the final expressions at order one are rather simple, the intermediate steps are quite
cumbersome due to the necessity of taking a large number of functional derivatives. Moreover,
the expression of the 2-point function <Oout’T d(x)d(y) ‘Oin> becomes simpler after we notice
that one can factor out Z[0]. This property is in fact completely general; all transition amplitudes
contain a factor Z[0]. From the remark made after eq. (1.65), this factor is a pure phase and its
squared modulus is one and will have no effect in transition probabilities. Therefore, it would
be desirable to identify from the start the terms that lead to this prefactor, to avoid unnecessary
calculations.

1.6.2 Diagrammatic representation

This simplification follows a quite transparent rule if we represent the above expressions dia-
grammatically, by introducing the following notation

G, = x Y. (1.93)

The functions considered above can be represented as follows:
143 5O +o)

YOO+ lxggfy +O()

(1.94)

Z[0]

<00ut’T¢)(X)¢(y)|Oin> = X

y+1§x
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The graphs that appear in the right hand side of these equations are called Feynman diagrams.
By adding to eq. (1.93) the rule that each vertex should have a factor —iA and an integration over
the entire space-time, then these graphs are in one-to-one correspondence with the expressions
of egs. (1.91) and (1.92). For now, we have recalled explicitly the numerical prefactors (1/8,
1/2,...) but they can in fact be recovered simply from the symmetries of the graphs.

In the second of eqs. (1.94), the second term of the right hand side contains a factor which
is not connected to any of the points x and y. These disconnected graphs are precisely the
ones responsible for the factor Z[0] that appears in all transition amplitudes. We can therefore
disregard these type of graphs altogether.

1.6.3 Feynman rules

The diagrammatic representation of eqgs. (1.94) can in fact be used to completely bypass the
explicit calculation of the functional derivatives of Zy[j]. The rules that govern this construction
are called Feynman rules. The contributions of order AP to a n-point time-ordered product of
fields (Oout| T (x1) - - - §(xn)|Oin) can be obtained as follows:

1. Draw all the graphs (with only vertices of valence 4) that connect the n points x; to X,
and have exactly p vertices. Graphs that contain a subgraph which is not connected to any
of the x;’s should be ignored.

: 0
2. Each line of a graph represents a free Feynman propagator G'.

3. Each vertex represents a factor —iA and an integral over the space-time coordinate as-
signed to this vertex.

4. The numerical prefactor for a given graph is the inverse of the order of its discrete symme-
try group. As an illustration, we indicate below the generators of these symmetry groups
and their order for the graphs that appear in eqgs. (1.94):

‘/\ ]
@><(D — order8 — -,
Z 8

1
xiy — order2 —>» 7" (1.95)

Z

Note that this rule for obtaining the symmetry factor associated to a given graph is correct
only if the corresponding term in the Lagrangian has been properly symmetrized. For
instance, the operator ¢p* should appear in the Lagrangian with a prefactor 1/4!.

1.6.4 Connected graphs
At the step 1, graphs made of several disconnected subgraphs can usually appear in certain

functions, provided that each subgraph is connected to at least one of the points x;. For instance,
a 4-point function contains a piece which is simply made of the product of two 2-point functions.
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In addition, it contains terms that correspond to a genuine 4-point function, not factorizable in
a product of 2-point functions. The factorizable pieces are usually less interesting because
they can be recovered from already calculated simpler building blocks. For this reason, it is
sometimes useful to introduce the generating function of the connected graphs, denoted Wj].
This functional is very simply related to Z[j] by

WIj] = log Z[j] . (1.96)

To give a glimpse of this identity, let us write
e ] . .
Wm = Z ajdé‘)(] T d4Xn Cn(xl)' o )Xn) )(X1 ) o 'J(Xn) ) (1.97)
n=1

where the Cpy (X1, -+ ,Xxn) are n-point functions whose diagrammatic representation contain
only connected graphs. If we expand Z[j] = exp W[j], we obtain

2 = 1+ @t i it + 5 [atxaty [Caixw) + GG W) ] ity)
<Ooul 0in>
—l—% J d*xd*yd’z {C3 (x,Y,2) + C2(x,y)C1(z)
+C2(y,2)C1 (%) + Ca(z,X)C1 (y)
+C1X)C1(Y)C1(2) | i )j(2) + -

On)

To(x)d(y)

{Oou

To(x)d(y)b(2)
(1.98)

This expansion highlights how the vacuum expectation values of time-ordered products of fields
can be factorized into products of connected contributions.

1.6.5 Feynman rules in momentum space

Until now, we have obtained Feynman rules in terms of objects that depend on space-time coor-
dinates, leading to expressions for the perturbative expansion of the vacuum expectation value
of time-ordered products of fields. However, in most practical applications, we need subse-
quently to use the LSZ reduction formula (1.63) to turn these expectation values into transition
amplitudes. This involves the application of the operator i([J 4 m?) to each external point, and
a Fourier transform. Firstly, note that thanks to eq. (1.88), the application of i(CJ + m?) simply
removes the external line to which it is applied:

(Oy +m?) [x@] - ’CO . (1.99)

Thus, these operators just produce Feynman graphs that are amputated of all their external lines.
Then, the Fourier transform can be propagated to all the internal lines of the graph, leading to an
expression that involves propagators and vertices that depend only on momenta. The Feynman
rules for obtaining directly these momentum space expressions are:
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1’. The graph topologies that must be considered is of course unchanged. The momenta of
the initial state particles are entering into the graph, and the momenta of the final state
particles are going out of the graph

2’. Each line of a graph represents a free Feynman propagator in momentum space éf (k)

3’. Each vertex represents a factor —iA(271)28(ky + - - - + k4), where the k; are the four
momenta entering into this vertex

3", All the internal momenta that are not constrained by these delta functions should be inte-
grated over with a measure d*k/(27)*

4’. Symmetry factors are computed as before.

For instance, these rules lead to:

PS ) - _iéj d'k i
= B 2 ) (2m* k2 —m2 410+

Py k% (i?\)ZJ d*x i i
(

vz N, 2 ) (2n)* K—mZHi0T (pr+p2a—Kk)2—m2+i0F
(1.100)

1.6.6 Counting the powers of A and h

The order in A of a (connected) graph G is of course related to the number of vertices ., in the
graph,

G~ A . (1.101)

This can also be related to the number of loops of the graph, which is a better measure of its
complexity since it determines how many momentum integrals it contains. Let us denote n the
number of external lines, n, the number of external lines and n, the number of loops. These
parameters are related by the following two identities:

4n, = 2n,+n,

A\
n n—n,+1. (1.102)

L
The first of these equations equates the number of “handles” carried by the vertices, and the
number of propagator endpoints that must attached to them. The right hand side of the second
equation counts the number of internal momenta that are not constrained by the delta functions
of momentum conservation carried the vertices (the +1 comes from the fact that not all these
delta functions are independent - a linear combination of them must simply tell that the sum of
the external momenta must be zero, and therefore does not constrain the internal ones in any
way). From these two identities, one obtains

—n, 14 2 (1.103)

ny
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and the order in A of the graph is also
9N}\TIL71+T1E/2 . (1104)

According to this formula, the order of a graph depends only on the number of external lines
n, (i.e. on the number of particles involved in the transition amplitude under consideration),
and on the number of loops. Thus, the perturbative expansion is also a Ioop expansion, with the
leading order being given by tree diagrams, the first correction in A by one-loop graphs, etc...

It turns out that the number of loops also counts the order in the Planck constanth of a graph.
Although we have been using a system of units in which h = 1, it is easy to reinstate i by the
substitution

S -

S 1 Oy 2 A
o=t (5o 00 + et} (1.105)

From this, we see that i enters in the Feynman rules as follows

Propagator : L
pagator : pZ—m2+1i0t+ "’
A
Vertex : _iﬁ s (1.106)
and the order in R of a graph is given by
G~R™M Y RN (1.107)

Therefore, each additional loop brings a power of i, and the loop expansion can also be viewed
as an expansion in powers of h.

1.7 Calculation of loop integrals

1.7.1 Wick’s rotation

Let us consider the first of the examples given in eq. (1.100) and define

4 .
AJ(d k ki (1.108)

—iX(P)=—-1i= .
EP) =5 | g7 o mr T 0
In order to calculate the momentum integral, it is useful to perform a Wick rotation, in which we
rotate the k¢ integration axis by 90 degrees to bring it along the imaginary axis, as illustrated in
the following figure:
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(%)

—Ep:l- 0+

E-i0*

The integrals along the horizontal and vertical axis are opposite because the shaded domain does
not contain any of the poles of the Feynman propagator, and because the propagator vanishes as

kgz when |ko| — oco. The integral along the vertical axis amounts to writing kg = —ik with
varying from —oo to +-oco. After this transformation, the integral of eq. (1.108) becomes
A ([ d*k 1
X(P)= = S B 1 1.109
(P) 2J(27r)4 k2 +m?2’ ( )

where k. is the Euclidean 4-vector defined by k! =k (i =1,2,3) and k! = «, with squared
norm ki =Kk + k2.

1.7.2 Volume element in D dimensions

When the integrand depends only on the norm |k |, we can separate the radial integration on
[k, | from the angular integration over the orientation of the vector in 4-dimensional Euclidean
space. In D dimensions, the volume measure for a rotationally invariant integrand reads

d”k, =DV, (1) kP " dk, , (1.110)

where V (k) is the volume of the D-dimensional ball of radius k.. These volumes can be
determined recursively by

7T
Vi(k,) =2k, , v, (k. ) :kEJ' do sin® vV, , (k. sin@) . (1.111)
0
Therefore, we have
Am 2
Va(k,) =mk?, Vi(k.)= ?ki , Va(k.) = 7k§ . (1.112)

Although knowing V4 (k. ) is sufficient for performing a radial momentum integral in four di-
mensions, it is interesting to have the formula for an arbitrary dimension, in view of applications
to dimensional regularization. More generally, we have

re+1 2nP/2
v N=v Mna/?—2—— and V_ (1)=——. 1.113
D+1() D( )T[ r(%+% an D() Dr(%) ( )
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1.7.3 Feynman parameterization of denominators

Let us now consider the second diagram of eq. (1.100) (with the notation P = p; + p2),

—1il4(P) =

_. 2 4 . .
(—iA) J’dk i i (1.114)

2 (2m)* k2—m2+i0t (P — k)2—m2+i0+ °

In this more complicated example, an extra difficulty is that the integrand is not rotationally
invariant. The following trick, known as Feynman parameterization can be used to rearrange the
denominators'*:

1 ! dx
AB :Jo XA + (1 —x)B]2 ° (1.115)

The denominator resulting from this transformation is
x(k2 —=m? +107) 4+ (1 —=x)(P—k)2 —m? +10") = 1> —=m? —A(x,P) +i0", (1.116)

where we denote L = k — (1 —x)P and A(x, P) = —x(1 — x)P?. At this point, we can apply a
Wick rotation'? to the shifted integration variable 1, in order to obtain

A2 (! a*1, 1
F4(P) = _7J0 dXJ (27_[)4 [l% +m2 —|—A(X,P)]2 ) (1.117)

where the integrand is again invariant by rotation in 4-dimensional Euclidean space.

1.8 Kiillen-Lehmann spectral representation

As we shall see now, the limit in eq. (1.41) that relates the interacting field ¢ and the free field
of the interaction picture ¢j, is too naive. One of the consequences is that we will have to make
a slight modification to the reduction formula (1.63).

Consider the time-ordered 2-point function,

<Oout|T d)(x)d)(y)|01n> = G(XO—UO) <Oout|¢(x)¢(y)|Oin>+e(yo_xo) <Oout’¢(y)¢(x)|oin> .
(1.118)

For each of the expectation values in the right hand side, let us insert an identity operator between
the two field operators, written in the form of a sum over all the possible physical states,

1= > M. (1.119)

states A

14For n denominators, this formula can be generalized into

1 1 1
—— =T(n dxq - dxn 6(1 — X4 .
A1Az - An ( )Jo ! n 8 ; 2 X1A7 + -+ xnAnl™

31t is allowed because the integration axis can be rotated counterclockwise without passing through the poles in the
variable 1g.
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The states A can be arranged into classes inside which the states differ only by a boost. A class of
states, that we will denote «, is characterized by its particle content and by the relative momenta
of these particles. Within a class, the total momentum of the state can be varied by applying a
Lorentz boost. For a class «, we will denote |ocp> the state of total momentum p. Each class
of states has an invariant mass m, such that the total energy p° and total momentum p of the
states in this class obey p3 —p? = m2,. In addition, it is useful to isolate the vacuum in the sum
over the states. Therefore, the identity operator can be rewritten as

d3
1= |0><O’ + Z J (27‘[)32\/:))2—}——111%( ’“P><o‘p‘ ) (1120)

classes o

where we have written the integral over the total momentum of the states in a Lorentz invariant
fashion. (We need not specify if we are using in or out states here.)

When we insert this identity operator between the two field operators, the vacuum does not
contribute. For instance

(Oou|(x)[0) = 0. (1.121)

(¢ creates or destroys a particle, and therefore has a vanishing matrix element between vacuum
states.) Using the momentum operator P, we can write

<Ooul‘¢(x)|(xp> = <Ooul‘eiﬁ'x¢(o)eiiﬁ'x‘(Xp>
= <00ul|¢(0)|(xp> e—i‘p-x
= (Oout|p(0)]xo) e P (1.122)
The second line uses the fact that the total momentum in the vacuum state is zero, and is p for
the state op,. In the last equality, we have applied a boost that cancels the total momentum p,

and used the fact that the vacuum is invariant, as well as the scalar field ¢(0). Therefore, we
obtain the following representation for the time-ordered 2-point function

O TGS W) [0y = D> (Oou|$(0)] ot (x| $(0)Oin)

classes o

3
d P {G(XO_HO)e—ip-(x—y)+e(yO_XO)eip-(x—y)} ,

8 J (2m)324/p% + m3

G? (x,ysm3)

o

(1.123)

where the underlined integral, G(F)(x,y;m%‘), is the Feynman propagator for a hypothetical
scalar field of mass m, (compare this integral with eq. (1.82)). It is customary to rewrite the
above representation as

e’} 2
(O T () b(y) O =L m

5 p(M?) GO(x,y;M?) (1.124)

where p(m?) is the spectral function defined as

p(M*) =2 ) 8(M? —m) (Oou|b(0)]ex0) (exo|(0)|Oin) - (1.125)
classes «
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This function describes the invariant mass distribution of the non-empty states of the theory
under consideration, and the exact Feynman propagator is a sum of free Feynman propagators
with varying masses, weighted by this mass distribution.

In a theory of massive particles, the spectral function has a delta function corresponding to
states containing a single particle of mass m, and a continuum distribution'® that starts at the
minimal invariant mass (2m) of a 2-particle state:

p(M?) =2 Z5(M? —m?) + continuum for M? > 4m? | (1.126)

where Z is the product of matrix elements that appear in eq. (1.125), in the case of 1-particle
states. In a theory with interactions, Z in general differs from unity (in fact, it may be infinite).
Note that in this equation, m must be the physical mass of the particles, as it would be inferred
from the simultaneous measurement of their energy and momentum. As we shall see shortly,
this is not the same as the parameter we denoted m in the Lagrangian.

Taking the Fourier transform of eq. (1.124) and using eq. (1.126) for the spectral function,
we obtain the following pole structure for the exact Feynman propagator:

~ iz

G =+t ithout poles . 1.127
(p) pz—m2+iO++ erms without poles ( )

Therefore, the parameter Z that appears in the spectral function has also the interpretation of the
residue of the single particle pole in the exact Feynman propagator.

The fact that Z # 1 calls for a slight modification of the LSZ reduction formulas. Eq. (1.126)
implies that a factor /Z appears in the overlap between the state ¢(x) }Oin> and the 1-particle
state |pin>. In other words, ¢ (x) creates a particle with probability Z rather than 1. Therefore,
there should be a factor Z~'/2 for each incoming and outgoing particle in the LSZ reduction
formulas that relate transition amplitudes to products of fields ¢:

m

. m+n
<q] o oul‘p] P in> = (211/2) J'Hd“xj e i (DXi + mZ)

i=1

x jH dy; €95 (O, +m2) (O TO0r) - bxm) Y1) - blyn) |0 -

j=1

(1.128)

In practical calculations, the factor Z at a given order of perturbation theory is obtained by
studying the 1-particle pole of the dressed propagator, as the residue of this pole. It is common
to introduce a renormalized field ¢, defined as a rescaling of ¢,

db=VZ¢,. (1.129)

By construction, the Feynman propagator defined from the 2-point time-ordered product of ¢,
has a single-particle pole of residue 1. In other words, we may replace in the right hand side
of the LSZ reduction formula (1.128) all the fields by renormalized fields, and at the same time
remove all the factors Z~ /2.

16Between the 1-particle delta function and the 2-particle continuum, there may be additional delta functions corre-
sponding to multi-particle bound states (to have a stable bound state, the binding energy should decrease the mass of the
state compared to the mass 2m of two free particles at rest).
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1.9 Ultraviolet divergences and renormalization

Until now, we have not attempted to calculate explicitly the integrals over the Euclidean momen-
tum k, in eqs. (1.109) and (1.117). In fact, these integrals do not converge when |k.| — oo,
and as such they are therefore infinite. These infinities are called ultraviolet divergences.

1.9.1 Regularization of divergent integrals

As we shall see shortly, this has very deep implications on how we should interpret the theory.
However, before we can discuss this, it is crucial to make the integrals temporarily finite in
order to secure the subsequent manipulations. This procedure, called regularization, amounts to
altering the theory to make all the integrals finite. There is no unique method for achieving this,
and the most common ones are the following:

e Pauli-Villars method : modify the Feynman propagator according to

i i i
—_— = — .
k? —m? +1i0+ kZ —m2 +1i0t k22— M2 410+

(1.130)

When [k, | > M, this modified propagator decreases as [k, |~ instead of [k, |2 for the
unmodified propagator, which is usually sufficient to render the integrals convergent. The
original theory (and its ultraviolet divergences) are recovered in the limit M — oo.

e Lattice regularization : replace continuous space-time by a regular lattice of points, for
instance a cubic lattice with a spacing a between the nearest neighbor sites. On such a
lattice, the momenta are themselves discrete, with a maximal momentum of order a~'.
Therefore, the momentum integrals are replaced by discrete sums that are all finite. The
original theory is recovered in the limit a — 0. A shortcoming of lattice regularization
is that the discrete momentum sums are usually much more difficult to evaluate than
continuum integrals, and th