PART 1

MOTION PLANNING

OVERVIEW

Roadmap methods

* Visibility graphs

* Voronoi diagrams
Decomposition methods
(¢ Approximate

[* Exact

* Deterministic, heyListic or probabilistic

* Planning algorithms evaluation criteria:

—>¢ Completeness

Potential fields —~f» Optimality
Sampling-based Planning —F> Speed)

* PRM —>Generality
* RRT

Applications to Computer Animation
Dynamic environments
Crowd Simulation

VISIBILITY GRAPHS

ENCE OF OBSTACLES, THE BEST
E STRAIGHT LINE BETWEEN

Qgtart AND Qppp

VISIBILITY GRAPHS

ASSUMING POLYGONAL OBSTACLES:
IT LOOKS LIKE THE SHORTEST PATH IS A
SEQUENCE OF STRAIGHT LINES JOINING

THE VERTICES OF THE OBSTACLES

VISIBILITY GRAPHS

VISIBILITY GRAPH G
= SET OF UNBLOCKED LINES BETWEEN
THE VERTICES OF THE OBSTACLES

t Qgpapt AND QpopL

A NODE P IS LINKED TO A NODE P’ IF P’
VISIBLE FROM P

SOLUTION = SHORTEST PATH IN THE
VISIBILITY GRAPH

VISIBILITY GRAPHS

CONSTRUCTION: SWEEP ALGORITHM

e ——

SWEEP A LINE ORIGINATING AT EACH VERTEX

RECORD THOSE LINES THAT END AT VISIBLE
VERTICES

COMPLEXITY

* N = total number of vertices of the obstacle
polygons

* Naive: O(N3)
* Sweep: O(N2log N)

VISIBILITY GRAPHS

SHORTEST PATH BUT:

* Tries to stay as close as possible to obstacles

* Any execution error will lead to a collision

* Complicated in >> 2 dimensions

e ———

WE MAY NOT CARE ABOUT STRICT OPTIMALITY
SO LONG AS WE FIND A SAFE PATH. STAYING
AWAY FROM OBSTACLES IS MORE IMPORTANT

THAN FINDING THE SHORTEST PATH

\bNEED TO DEFINE OTHER TYPES OF “ROADMAPS”

Lozano-Pérez, Tomas; Wesley, Michael A. (1979), "An algorithm for planning collision-free paths amoni
obstacles", Communications of the ACM, 22 (10): 560-570, doi:10.1145/359156.359164

https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145/359156.359164

VORONOI DIAGRAM

GIVEN A SET OF DATA POINTS IN THE
PLANE:

* Color the entire plane such that the color of
any point in the plane is the same as the

color of its nearest .) O

VORONOI

DIAGRAM

VORONOI DIAGRAM

VORONOI DIAGRAM:
THE SET OF LINE SEGMENTS SEPARATING
THE REGIONS CORRESPONDING TO
DIFFERENT COLORS

LINE SEGMENT = POINTS EQUIDISTANT
FROM 2 DATA POINTS

V/ERTICES = POINTS EQUIDISTANT FROM >
2 DATA POINTS

VORONOI

COMPLEXITY (IN THE PLANE):

O(N log N) time
O(N) space

BEYOND POINTS:

Edges are combinations of straight line
segments and segments of quadratic curves

Straight edges: Points equidistant from 2
lines

Curved edges: Points equidistant from one
corner and one line

VORONOI DIAGRAM

KEY PROPERTY:
THE POINTS ON THE EDGES OF THE
VVORONOI DIAGRAM ARE THE FURTHEST
FROM THE OBSTACLES

IDEA:

CONSTRUCT A PATH BETWEEN Qgrprr AND
Q:on, BY FOLLOWING EDGES ON THE
\/ORONOI DIAGRAM (USE THE VORONO!
DIAGRAM AS A ROADMAP GRAPH INSTEAD
OF THE VISIBILITY GRAPH)

VORONOI DIAGRAM

DIFFICULT TO COMPUTE IN HIGHER DIMENSIONS
OR NONPOLYGONAL WORLDS

* Approximate algorithms exist
* Use of Voronoi is not necessarily the best

(HEURISTIC (“STAY AWAY FROM OBSTACLES”)
CAN LEAD TO PATHS THAT ARE MUCH TOO
CONSERVATIVE

CAN BE UNSTABLE: SMALL CHANGES IN
OBSTACLE CONFIGURATION CAN LEAD TO LARGE
CHANGES IN THE DIAGRAM

OVERVIEW

Roadmap methods
* Visibility graphs
* Voronoi diagrams
Decomposition methods
* Approximate
* Exact

Potential fields

* Deterministic, heuristic or probabilistic

* Planning algorithms evaluation criteria:
* Completeness

* Optimality
Sampling-based Planning * Speed
* PRM * Generality

R S

* RRT
Applications to Computer Animation -
Dynamic environments
Crowd Simulation

APPROXIMATE CELL DECOMPOSITION

@EFINE A DISCRETE GRID IN CSPACE

—p * Mark any cell of the grid that intersects C,, as blocked

FIND PATH THROUGH REMAINING CELLS BY USING (FOR (

EXAMPLE) A* (E.G., USE EUCLIDEAN DISTANCE AS b

HEURISTIC) end
- CANNOT BE COMPLETE AS DESCRIBED SO FAR. WHY? /M // \/
NOTE: —
\ ./'C start

* deterministic approaches with exact decomposition are \

complete

¢ Jdeterministic approaches with approximate decomposition are
representation-complete

APPROXIMATE CELL DECOMPOSITION

CANNOT FIND A PATH IN THIS CASE EVEN THOUGH
ONE EXISTS

—— SOLUTION: DISTINGUISH BETWEEN e “\\l

. \Cells that are entirely contained in Cobs (FULL) and
« |Cells that partially intersect C (MIXED)

obs

CELLS

KTRY TO FIND A PATH USING THE CURRENT SET OF

IF NO PATH FOUND: ol \ }!

* Subdivide the MIXED cells and try again with the new
set of cells

APPROXIMATE CELL DECOMPOSITION

GOOD:

Limited assumptions on obstacle
configuration

Approach used in practice

Find obvious solutions quickly

BAD:

No clear notion of optimality (“best” path)

Trade-off comple_teness/compgtation

Still difficult to use in high dimensions

e —

EXACT CELL DECOMPOSITION

e ———

\
i)

ey

=¥

- /
Any path within one cell is guaranteed to not
intersect any obstacle

EXACT CELL DECOMPOSITION

THE GRAPH OF CELLS DEFINES A
ROADMAP

AND CAN BE USED TO FIND A PATH
BETWEEN ANY TWO CONFIGURATION

EXACT CELL DECOMPOSITION

(Plane Sweep algorithm
Initialize current list of cells to empty
Order the vertices of Cobs along the x direction

For every vertex:

* Construct the plane at the corresponding x location
* Depending on the type of event: 2
Split a current cell into 2 new cells OR J

Merge two of the current cells Critical event: Critical event:
Create new cell Split cell

* Create a new cell

Complexity (in 2-D):
* Time: O(N log N)
* Space: O(N)

OVERVIEW

* Roadmap methods
* Visibility graphs
* Voronoi diagrams
—= Decomposition methods
(¢ Approximate
(+ Exact

* Deterministic, heuristic or probabilistic
* Planning algorithms evaluation criteria:
— * Completeness

* Sampling-based Planning * Speed
* PRM —= Generality

* RRT
Applications to Computer Animation —E
* Dynamic environments ,
Crowd Simulation

POTENTIAL FIELDS

STAY AWAY FROM OBSTACLES: IMAGINE
THAT THE OBSTACLES ARE MADE OF A
MATERIAL THAT GENERATE A REPULSIVE

FIELD
& J Attractive
Repulsive field f
5> MOVE CLOSER TO THE GOAL: IMAGINE | field from L = Cgoal
THAT THE GOAL LOCATION IS A PARTICLE 2IBECIED gy

THAT GENERATES AN ATTRACTIVE FIELD

POTENTIAL FIELDS

Repulsive Field Attractive Field

Move toward
lowest potential
Steepest descent
(Best first search)
on potential field

Combined Field

Distance to nearest obstacle point.
Note: Can be computed efficiently by
using the distance transform

(U(q)=l§_(q) (AU, (q)

A controls how far we
stay from the obstacles

POTENTIAL FIELDS

o —

-

Potential field Zoomed in view

Can you spot
the problem?

POTENTIAL FIELDS IN GENERAL EXHIBIT
LOCAL MINIMA

X qgoal

/\

SPECIAL CASE: NAVIGATION FUNCTION

y U(qgoal) B O
* For any q different from q,,, there exists a
neighbor g’ such that U(q’) < U(q)

Local minimum
of potentia

GETTING OUT OF LocAL MINIMA

—

Repeat Repeat
° ﬂf U(q) = 0 return Success * If U(q) = O return Success
o [If too many iterations return Failure * If too many iterations return Failure
. Else: * Else:

* Find neighbor q,, of g with smallest U(q,,)

* Find neighbo@of q with smallest U(q,))
* If U(q,) < U(q)

* If U(gq,) < U(q) OR g, has not yet been visited

S * Movetogn(g<-q,)
B Move to qn (q <- qn) ° Else
* Remember q, —=PTake a random walk for T steps starting af g;J

—}hSet g to the configuration rez
of the random walk

Roadmap methods
* Visibility graphs
* Voronoi diagrams
Decomposition methods
* Approximate
* Exact
Potential fields
Sampling-based Planning
* PRM
* RRT
Applications to Computer Animation
Dynamic environments
Crowd Simulation

OVERVIEW

* Deterministic, heuristic or probabilistic
* Planning algorithms evaluation criteria:
¢ Completeness
k Optimality
—& Speed
—4> Generality

QANNING IN HIGH-DIMENSIONAL SPACES

(IDEAI_; A COMPLETE PLANNER (KEY IDEA: INSTEAD OF SEARCHING THE WHOLE CONFIGURATION
SPACE, RANDOMLY EXPLORE SOLUTIONS AND CAPTURE THEM

* Guarantees to find a solution in finite time if exists
* Indicates the non existence of a solution in a finite time FACILITATES A « PROBING » INSTEAD OF EXHAUSTIVE
. (1;Iote: completeness means the computation of 1 path, among EXPLORATION

thers.

PROBLEM: P—SPA_CE COMPLEXITY [REIF "79] DRrAWE N

SOLUTIONS® . LCompIeteness and optimality are lost

* [Classical trade-off however

& Lower the dimension of the search space

* Limit the number of possible solutions (e.g., bound the search
space)

X Sacrifice optimality

NG Sacrifice completeness

PROBABILISTIC ROADMAPS METHOD (PRM)

LQELIES ON 3 ELEMENTS:

Collision checker
Local Method _J
Sampler

2 MAJOR STEPS:

Exploration Phase
— * Query Phase

KEY IDEA: EXPLORE RANDOMLY C-SPACE AND CAPTURE C- *
FREE TOPOLOGY INTO A ROADMAP

{ COMPLETE IN INFINITE TIME:

PROBABILISTICALLY COMPLETE

LOCAL METHOD

—> [N CHARGE OF KINEMATICS CONSTRAINTS

~—

GIVEN Quit AND Qgp, HOW TO COMPUTE A LOCAL PATH
I ~ JOINING THEM?

NOT TAKING INTO ACCOUNT OBSTACLES

EXAMPLES: ~ <

\ - L
qinit

* Free: linear

PREPROCESSING: LEARNING PHASE

—_——

ITERATIVE ALGORITHM

/{ 1. COMPUTE RANDOM CONFIGURATION

* Collision checker

\ 2. CONNECT CONFIGURATION

* Collision checker
* Local method

3. Gorol

PREPROCESSING: LEARNING PHASE

ITERATIVE ALGORITHM

1. COMPUTE RANDOM CONFIGURATION

e Collision checker <——

2. CONNECT CONFIGURATION

* Collision checker
* Local method

3. Gorol

PREPROCESSING: LEARNING PHASE

ITERATIVE ALGORITHM

1. COMPUTE RANDOM CONFIGURATION

* Collision checker

2. CONNECT CONFIGURATION

* Collision checker
* Local method

3. Gorol

PREPROCESSING: LEARNING PHASE

ITERATIVE ALGORITHM

1. COMPUTE RANDOM CONFIGURATION

e Collision checker —

2. CONNECT CONFIGURATION

* Collision checker
* Local method

3. Gorol

PREPROCESSING: LEARNING PHASE

ITERATIVE ALGORITHM

1. COMPUTE RANDOM CONFIGURATION

* Collision checker

2. CONNECT CONFIGURATION

* Collision checker
* Local method

3. Gorol

PREPROCESSING: LEARNING PHASE

ITERATIVE ALGORITHM

1. COMPUTE RANDOM CONFIGURATION

* Collision checker

2. CONNECT CONFIGURATION

* Collision checker
* Local method

3. Gorol

PREPROCESSING: LEARNING PHASE

ITERATIVE ALGORITHM

1. COMPUTE RANDOM CONFIGURATION

* Collision checker

2. CONNECT CONFIGURATION

* Collision checker =
* Local method <—

3. Gorol

PREPROCESSING: LEARNING PHASE

ITERATIVE ALGORITHM

1. COMPUTE RANDOM CONFIGURATION

* Collision checker

2. CONNECT CONFIGURATION

* Collision checker
* Local method

3. Gorol

PREPROCESSING: LEARNING PHASE

ITERATIVE ALGORITHM

1. COMPUTE RANDOM CONFIGURATION

* Collision checker

2. CONNECT CONFIGURATION

* Collision checker
* Local method —

3. Gorol

PREPROCESSING: LEARNING PHASE

ITERATIVE ALGORITHM

1. COMPUTE RANDOM CONFIGURATION

* Collision checker

2. CONNECT CONFIGURATION

* Collision checker
* Local method

3. Gorol

PREPROCESSING: LEARNING PHASE

ITERATIVE ALGORITHM

1. COMPUTE RANDOM CONFIGURATION

* Collision checker

2. CONNECT CONFIGURATION

* Collision checker
* Local method

3. Gorol

QUERY PHASE

ROADMAP IS REUSED FOR SOLVING QUERIES

1. CONNECT DESIRED INITIAL AND FINAL
CONFIGURATIONS

2. |F CORRESPONDING NODES BELONG TO THE SAME
CONNECTED COMPONENT, A SOLUTION EXISTS

3. GRAPH SEARCH

QUERY PHASE

ROADMAP IS REUSED FOR SOLVING QUERIES

1. CONNECT DESIRED INITIAL AND FINAL
CONFIGURATIONS

2. |F CORRESPONDING NODES BELONG TO THE SAME
CONNECTED COMPONENT, A SOLUTION EXISTS

3. GRAPH SEARCH

QUERY PHASE

ROADMAP IS REUSED FOR SOLVING QUERIES

1. CONNECT DESIRED INITIAL AND FINAL
CONFIGURATIONS

2. |F CORRESPONDING NODES BELONG TO THE SAME
CONNECTED COMPONENT, A SOLUTION EXISTS

3. GRAPH SEARCH

4. OPTIMIZATION

—

GOoOOD & BAD NEWS

\

LGOOD NEWS

{' Probabilistically complete
C" Do not construct the C-space
—+&> Apply easily to high-dimensional C-space

— support fast queries w/ enough preprocessing

MANY SUCCESS STORIES WHERE PRMS SOLVE PREVIOUSLY
UNSOLVED PROBLEMS

THE BAD NEWS

* Don’t work as well for some problems:
“< unlikely to sample nodes in narrow passages

< hard to sample/connect nodes on constraint surfaces

—=’,No optimality or completeness

SAMPLE NEAR OBSTACLES

—f, OBPRM

————

g, found in collision
Generate random direction v
Find g, in direction v that is free

Binary search from q,, to obstacle boundary to generate
node

—>GAUSSIAN SAMPLER

Finda q,

Find another q, picked from a Gaussian distribution
centered at q,

If they are both in collision or free, discard. Otherwise,
keep the free

| CToBst [/ '

&

PRM Roadmap

|
'C-obst,

OBPRM: FINDING POINTS ON C-OBSTACLES

BASIC IDEA:

1. FIND A POINT IN S’S C-OBSTACLE (ROBOT
PLACEMENT COLLIDING WITH S)

» 328 nodes
* 4 major CCs

2. SELECT A RANDOM DIRECTION IN C-SPACE

3. FIND A FREE POINT IN THAT DIRECTION

OBPRM
* 161 nodes
* 2 major CCs

4. FIND BOUNDARY POINT BETWEEN THEM
USING BINARY SEARCH (COLLISION CHECKS)

SAMPLING STRATEGY

HIGHLY CONSTRAINED PROBLEMS RESULT IN
HUGE ROADMAPS:

- Construction is time consuming
{Search is time consuming

QSAI\/IPLING STRATEGIES HELP IN REDUCING
THE ROADMAP SIZE

e

EXAMPLE:

. Q/isibility-PRM

VISIBILITY-PRM

VISIBILITY DOMAIN OF
CONFIGURATION Q:

VISIBILITY-PRM

A NEW CONFIGURATION
IS RETAINED ONLY IF
OUT OF THE VISIBILITY
DOMAIN OF OTHER
CONFIGURATIONS

VISIBILITY-PRM

A NEW CONFIGURATION (O \

IS RETAINED ONLY IF
OUT OF THE VISIBILITY

DOMAIN OF OTHER @

CONFIGURATIONS

THESE CONFIGURATIONS

ARE CALLED “GUARDIANS” l O ’

VISIBILITY-PRM

A NEW CONFIGURATION
IS RETAINED ONLY IF
OUT OF THE VISIBILITY
DOMAIN OF OTHER
CONFIGURATIONS

THESE CONFIGURATIONS

ARE CALLED “CONNECTORS”

.
gh

2]

VISIBILITY-PRM

(THIS IS A 6-DIMENSIONAL C-SPACE IN 3-D)

RRT: RAPIDLY-EXPLORING RANDOM TREES

KPRM IS A MULTI-QUERY METHOD: THE SAME ROADMAP IS
REUSED TO SOLVE DIFFERENT QUERIES

RRT IS SINGLE-QUERY: THE PROBLEM IS SOLVED WITHOUT
PRELIMINARY EXPLORATION OF C—FREE/

RRT: RAPIDLY-EXPLORING RANDOM TREES

ITERATIVE ALGORITHM:

1. COMPUTE Qpanp

@
qgoal

P

2. CONNECT TO Qupgag

ERRINSERT Q) ey

[NI L4' GoTo 1

RRT: RAPIDLY-EXPLORING RANDOM TREES

ITERATIVE ALGORITHM:

INCEINMPUTE Qpanp

2. CONNECT TO Qupgag
ERRINSERT Q) ey

4. Goro1l

RRT: RAPIDLY-EXPLORING RANDOM TREES

ITERATIVE ALGORITHM:

1. COMPUTE Qpanp
2. CONNECT TO Qupgag
ERRINSERT Q) ey

4. Goro1l

RRT: RAPIDLY-EXPLORING RANDOM TREES

ITERATIVE ALGORITHM:

1. COMPUTE Qpanp

2. CONNECT TO Qupgag
3. INSERT Queyy

4. Goro1l

RRT: RAPIDLY-EXPLORING RANDOM TREES

ITERATIVE ALGORITHM:

INCEINMPUTE Qpanp

2. CONNECT TO Qupgag
ERRINSERT Q) ey

4. Goro1l

RRT: RAPIDLY-EXPLORING RANDOM TREES

ITERATIVE ALGORITHM:

1. COMPUTE Qpanp

2. CONNECT TO Qupgag
ERRINSERT Q) ey

4. Goro1l

RRT: RAPIDLY-EXPLORING RANDOM TREES

ITERATIVE ALGORITHM:

1. COMPUTE Qpanp

@
qgoal

3. INSERT Queyy i
o—) Qrand
4, Goto 1 Qinit

2. CONNECT TO Qupgag

RRT: RAPIDLY-EXPLORING RANDOM TREES

ITERATIVE ALGORITHM:

1. COMPUTE Qpanp

goal

ERRINSERT Q) ey i

2. CONNECT TO Qupgag

GROW TWO RRTS TOWARDS EACH OTHER

MORE...

PLANNING ALGORITHMS
STEVEN M. LAVALLE

PLANNING HTTP://PLANNING.CS.UIUC.EDU/
ALGORITHMS

Steven M. LaValle

http://planning.cs.uiuc.edu/

