
PART 1
-

MOTION PLANNING

MOTION PLANNING ALGORITHMS

O V E R V I E W

• Roadmap methods
• Visibility graphs

• Voronoi diagrams

• Decomposition methods
• Approximate

• Exact

• Potential fields

• Sampling-based Planning
• PRM

• RRT

• Applications to Computer Animation

• Dynamic environments

• Crowd Simulation

• Deterministic, heuristic or probabilistic

• Planning algorithms evaluation criteria:
• Completeness

• Optimality

• Speed

• Generality

V I S I B I L I T Y G R A P H S

IN THE ABSENCE OF OBSTACLES, THE BEST

PATH IS THE STRAIGHT LINE BETWEEN

QSTART AND QEND

V I S I B I L I T Y G R A P H S

ASSUMING POLYGONAL OBSTACLES:
IT LOOKS LIKE THE SHORTEST PATH IS A

SEQUENCE OF STRAIGHT LINES JOINING

THE VERTICES OF THE OBSTACLES

V I S I B I L I T Y G R A P H S

VISIBILITY GRAPH G
= SET OF UNBLOCKED LINES BETWEEN

THE VERTICES OF THE OBSTACLES

+ QSTART AND QGOAL

A NODE P IS LINKED TO A NODE P’ IF P’
VISIBLE FROM P

SOLUTION = SHORTEST PATH IN THE

VISIBILITY GRAPH

V I S I B I L I T Y G R A P H S

CONSTRUCTION: SWEEP ALGORITHM

SWEEP A LINE ORIGINATING AT EACH VERTEX

RECORD THOSE LINES THAT END AT VISIBLE
VERTICES

COMPLEXITY

• N = total number of vertices of the obstacle
polygons

• Naïve: O(N3)
• Sweep: O(N2 log N)

V I S I B I L I T Y G R A P H S

SHORTEST PATH BUT:

• Tries to stay as close as possible to obstacles

• Any execution error will lead to a collision

• Complicated in >> 2 dimensions

WE MAY NOT CARE ABOUT STRICT OPTIMALITY

SO LONG AS WE FIND A SAFE PATH. STAYING

AWAY FROM OBSTACLES IS MORE IMPORTANT

THAN FINDING THE SHORTEST PATH

NEED TO DEFINE OTHER TYPES OF “ROADMAPS”

Lozano-Pérez, Tomás; Wesley, Michael A. (1979), "An algorithm for planning collision-free paths among polyhedral
obstacles", Communications of the ACM, 22 (10): 560–570, doi:10.1145/359156.359164

https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145/359156.359164

V O R O N O I D I A G R A M

GIVEN A SET OF DATA POINTS IN THE

PLANE:

• Color the entire plane such that the color of
any point in the plane is the same as the
color of its nearest

V O R O N O I D I A G R A M

V O R O N O I D I A G R A M

VORONOI DIAGRAM:
THE SET OF LINE SEGMENTS SEPARATING

THE REGIONS CORRESPONDING TO

DIFFERENT COLORS

LINE SEGMENT = POINTS EQUIDISTANT

FROM 2 DATA POINTS

VERTICES = POINTS EQUIDISTANT FROM >
2 DATA POINTS

V O R O N O I D I A G R A M

COMPLEXITY (IN THE PLANE):

• O(N log N) time

• O(N) space

BEYOND POINTS:

• Edges are combinations of straight line
segments and segments of quadratic curves

• Straight edges: Points equidistant from 2
lines

• Curved edges: Points equidistant from one
corner and one line

V O R O N O I D I A G R A M

KEY PROPERTY:
THE POINTS ON THE EDGES OF THE

VORONOI DIAGRAM ARE THE FURTHEST

FROM THE OBSTACLES

IDEA:
CONSTRUCT A PATH BETWEEN QSTART AND

QGOAL BY FOLLOWING EDGES ON THE

VORONOI DIAGRAM (USE THE VORONOI

DIAGRAM AS A ROADMAP GRAPH INSTEAD

OF THE VISIBILITY GRAPH)

V O R O N O I D I A G R A M

DIFFICULT TO COMPUTE IN HIGHER DIMENSIONS

OR NONPOLYGONAL WORLDS

• Approximate algorithms exist

• Use of Voronoi is not necessarily the best

HEURISTIC (“STAY AWAY FROM OBSTACLES”)
CAN LEAD TO PATHS THAT ARE MUCH TOO

CONSERVATIVE

CAN BE UNSTABLE: SMALL CHANGES IN

OBSTACLE CONFIGURATION CAN LEAD TO LARGE

CHANGES IN THE DIAGRAM

O V E R V I E W

• Roadmap methods
• Visibility graphs

• Voronoi diagrams

• Decomposition methods
• Approximate

• Exact

• Potential fields

• Sampling-based Planning
• PRM

• RRT

• Applications to Computer Animation

• Dynamic environments

• Crowd Simulation

• Deterministic, heuristic or probabilistic

• Planning algorithms evaluation criteria:
• Completeness

• Optimality

• Speed

• Generality

A P P R O X I M A T E C E L L D E C O M P O S I T I O N

DEFINE A DISCRETE GRID IN CSPACE

• Mark any cell of the grid that intersects Cobs as blocked

FIND PATH THROUGH REMAINING CELLS BY USING (FOR
EXAMPLE) A* (E.G., USE EUCLIDEAN DISTANCE AS

HEURISTIC)

CANNOT BE COMPLETE AS DESCRIBED SO FAR. WHY?

NOTE:

• deterministic approaches with exact decomposition are
complete

• deterministic approaches with approximate decomposition are
representation-complete

A P P R O X I M A T E C E L L D E C O M P O S I T I O N

CANNOT FIND A PATH IN THIS CASE EVEN THOUGH

ONE EXISTS

SOLUTION: DISTINGUISH BETWEEN

• Cells that are entirely contained in Cobs (FULL) and

• Cells that partially intersect Cobs (MIXED)

TRY TO FIND A PATH USING THE CURRENT SET OF

CELLS

IF NO PATH FOUND:

• Subdivide the MIXED cells and try again with the new
set of cells

Q U A D T R E E D E C O M P O S I T I O N

O C T R E E D E C O M P O S I T I O N

A P P R O X I M A T E C E L L D E C O M P O S I T I O N

GOOD:

• Limited assumptions on obstacle

configuration

• Approach used in practice

• Find obvious solutions quickly

BAD:

• No clear notion of optimality (“best” path)

• Trade-off completeness/computation

• Still difficult to use in high dimensions

E X A C T C E L L D E C O M P O S I T I O N

E X A C T C E L L D E C O M P O S I T I O N

THE GRAPH OF CELLS DEFINES A

ROADMAP

AND CAN BE USED TO FIND A PATH

BETWEEN ANY TWO CONFIGURATION

E X A C T C E L L D E C O M P O S I T I O N

Plane Sweep algorithm

• Initialize current list of cells to empty

• Order the vertices of Cobs along the x direction

• For every vertex:

• Construct the plane at the corresponding x location

• Depending on the type of event:

• Split a current cell into 2 new cells OR

• Merge two of the current cells

• Create a new cell

• Complexity (in 2-D):

• Time: O(N log N)

• Space: O(N)

O V E R V I E W

• Roadmap methods
• Visibility graphs

• Voronoi diagrams

• Decomposition methods
• Approximate

• Exact

• Potential fields

• Sampling-based Planning
• PRM

• RRT

• Applications to Computer Animation

• Dynamic environments

• Crowd Simulation

• Deterministic, heuristic or probabilistic

• Planning algorithms evaluation criteria:
• Completeness

• Optimality

• Speed

• Generality

P O T E N T I A L F I E L D S

STAY AWAY FROM OBSTACLES: IMAGINE

THAT THE OBSTACLES ARE MADE OF A

MATERIAL THAT GENERATE A REPULSIVE

FIELD

MOVE CLOSER TO THE GOAL: IMAGINE

THAT THE GOAL LOCATION IS A PARTICLE

THAT GENERATES AN ATTRACTIVE FIELD

P O T E N T I A L F I E L D S

P O T E N T I A L F I E L D S

P O T E N T I A L F I E L D S

POTENTIAL FIELDS IN GENERAL EXHIBIT

LOCAL MINIMA

SPECIAL CASE: NAVIGATION FUNCTION

• U(qgoal) = 0

• For any q different from qgoal, there exists a
neighbor q’ such that U(q’) < U(q)

G E T T I N G O U T O F L O C A L M I N I M A

Repeat

• If U(q) = 0 return Success

• If too many iterations return Failure

• Else:

• Find neighbor qn of q with smallest U(qn)

• If U(qn) < U(q) OR qn has not yet been visited

• Move to qn (q <- qn)

• Remember qn

Repeat

• If U(q) = 0 return Success

• If too many iterations return Failure

• Else:

• Find neighbor qn of q with smallest U(qn)

• If U(qn) < U(q)

• Move to qn (q <- qn)

• Else

• Take a random walk for T steps starting at qn

• Set q to the configuration reached at the end

of the random walk

O V E R V I E W

• Roadmap methods
• Visibility graphs

• Voronoi diagrams

• Decomposition methods
• Approximate

• Exact

• Potential fields

• Sampling-based Planning
• PRM

• RRT

• Applications to Computer Animation

• Dynamic environments

• Crowd Simulation

• Deterministic, heuristic or probabilistic

• Planning algorithms evaluation criteria:
• Completeness

• Optimality

• Speed

• Generality

P L A N N I N G I N H I G H - D I M E N S I O N A L S P A C E S

IDEAL: A COMPLETE PLANNER

• Guarantees to find a solution in finite time if exists

• Indicates the non existence of a solution in a finite time

• Note: completeness means the computation of 1 path, among
others.

PROBLEM: P-SPACE COMPLEXITY [REIF ’79]

SOLUTIONS:

• Lower the dimension of the search space

• Limit the number of possible solutions (e.g., bound the search
space)

• Sacrifice optimality

• Sacrifice completeness

KEY IDEA: INSTEAD OF SEARCHING THE WHOLE CONFIGURATION

SPACE, RANDOMLY EXPLORE SOLUTIONS AND CAPTURE THEM

FACILITATES A « PROBING » INSTEAD OF EXHAUSTIVE

EXPLORATION

DRAWBACKS?

• Completeness and optimality are lost

• Classical trade-off however

P R O B A B I L I S T I C R O A D M A P S M E T H O D (P R M)

RELIES ON 3 ELEMENTS:

• Collision checker
• Local Method
• Sampler

2 MAJOR STEPS:

• Exploration Phase
• Query Phase

KEY IDEA: EXPLORE RANDOMLY C-SPACE AND CAPTURE C-
FREE TOPOLOGY INTO A ROADMAP

COMPLETE IN INFINITE TIME:
PROBABILISTICALLY COMPLETE

L O C A L M E T H O D

IN CHARGE OF KINEMATICS CONSTRAINTS

GIVEN QINIT AND QGOAL, HOW TO COMPUTE A LOCAL PATH

JOINING THEM?

NOT TAKING INTO ACCOUNT OBSTACLES

EXAMPLES:

• Free: linear

• Car: Reeds & Shepp, Dubins

• …

qinit qgoal

P R E P R O C E S S I N G : L E A R N I N G P H A S E

ITERATIVE ALGORITHM

1. COMPUTE RANDOM CONFIGURATION

• Collision checker

2. CONNECT CONFIGURATION

• Collision checker

• Local method

3. GOTO 1

P R E P R O C E S S I N G : L E A R N I N G P H A S E

ITERATIVE ALGORITHM

1. COMPUTE RANDOM CONFIGURATION

• Collision checker

2. CONNECT CONFIGURATION

• Collision checker

• Local method

3. GOTO 1

P R E P R O C E S S I N G : L E A R N I N G P H A S E

ITERATIVE ALGORITHM

1. COMPUTE RANDOM CONFIGURATION

• Collision checker

2. CONNECT CONFIGURATION

• Collision checker

• Local method

3. GOTO 1

P R E P R O C E S S I N G : L E A R N I N G P H A S E

ITERATIVE ALGORITHM

1. COMPUTE RANDOM CONFIGURATION

• Collision checker

2. CONNECT CONFIGURATION

• Collision checker

• Local method

3. GOTO 1

P R E P R O C E S S I N G : L E A R N I N G P H A S E

ITERATIVE ALGORITHM

1. COMPUTE RANDOM CONFIGURATION

• Collision checker

2. CONNECT CONFIGURATION

• Collision checker

• Local method

3. GOTO 1

P R E P R O C E S S I N G : L E A R N I N G P H A S E

ITERATIVE ALGORITHM

1. COMPUTE RANDOM CONFIGURATION

• Collision checker

2. CONNECT CONFIGURATION

• Collision checker

• Local method

3. GOTO 1

P R E P R O C E S S I N G : L E A R N I N G P H A S E

ITERATIVE ALGORITHM

1. COMPUTE RANDOM CONFIGURATION

• Collision checker

2. CONNECT CONFIGURATION

• Collision checker

• Local method

3. GOTO 1

P R E P R O C E S S I N G : L E A R N I N G P H A S E

ITERATIVE ALGORITHM

1. COMPUTE RANDOM CONFIGURATION

• Collision checker

2. CONNECT CONFIGURATION

• Collision checker

• Local method

3. GOTO 1

P R E P R O C E S S I N G : L E A R N I N G P H A S E

ITERATIVE ALGORITHM

1. COMPUTE RANDOM CONFIGURATION

• Collision checker

2. CONNECT CONFIGURATION

• Collision checker

• Local method

3. GOTO 1

P R E P R O C E S S I N G : L E A R N I N G P H A S E

ITERATIVE ALGORITHM

1. COMPUTE RANDOM CONFIGURATION

• Collision checker

2. CONNECT CONFIGURATION

• Collision checker

• Local method

3. GOTO 1

P R E P R O C E S S I N G : L E A R N I N G P H A S E

ITERATIVE ALGORITHM

1. COMPUTE RANDOM CONFIGURATION

• Collision checker

2. CONNECT CONFIGURATION

• Collision checker

• Local method

3. GOTO 1

Q U E R Y P H A S E

ROADMAP IS REUSED FOR SOLVING QUERIES

1. CONNECT DESIRED INITIAL AND FINAL

CONFIGURATIONS

2. IF CORRESPONDING NODES BELONG TO THE SAME

CONNECTED COMPONENT, A SOLUTION EXISTS

3. GRAPH SEARCH qinit

qgoal

Q U E R Y P H A S E

ROADMAP IS REUSED FOR SOLVING QUERIES

1. CONNECT DESIRED INITIAL AND FINAL

CONFIGURATIONS

2. IF CORRESPONDING NODES BELONG TO THE SAME

CONNECTED COMPONENT, A SOLUTION EXISTS

3. GRAPH SEARCH qinit

qgoal

Q U E R Y P H A S E

ROADMAP IS REUSED FOR SOLVING QUERIES

1. CONNECT DESIRED INITIAL AND FINAL

CONFIGURATIONS

2. IF CORRESPONDING NODES BELONG TO THE SAME

CONNECTED COMPONENT, A SOLUTION EXISTS

3. GRAPH SEARCH

4. OPTIMIZATION

qinit

qgoal

G O O D & B A D N E W S

GOOD NEWS

• Probabilistically complete

• Do not construct the C-space

• Apply easily to high-dimensional C-space

• support fast queries w/ enough preprocessing

MANY SUCCESS STORIES WHERE PRMS SOLVE PREVIOUSLY

UNSOLVED PROBLEMS

THE BAD NEWS

• Don’t work as well for some problems:

• unlikely to sample nodes in narrow passages

• hard to sample/connect nodes on constraint surfaces

• No optimality or completeness

S A M P L E N E A R O B S T A C L E S

OBPRM

• qin found in collision

• Generate random direction v

• Find qout in direction v that is free

• Binary search from qin to obstacle boundary to generate
node

GAUSSIAN SAMPLER

• Find a q1

• Find another q2 picked from a Gaussian distribution
centered at q1

• If they are both in collision or free, discard. Otherwise,
keep the free

O B P R M : F I N D I N G P O I N T S O N C - O B S T A C L E S

BASIC IDEA:

1. FIND A POINT IN S’S C-OBSTACLE (ROBOT

PLACEMENT COLLIDING WITH S)

2. SELECT A RANDOM DIRECTION IN C-SPACE

3. FIND A FREE POINT IN THAT DIRECTION

4. FIND BOUNDARY POINT BETWEEN THEM

USING BINARY SEARCH (COLLISION CHECKS)

S A M P L I N G S T R A T E G Y

HIGHLY CONSTRAINED PROBLEMS RESULT IN

HUGE ROADMAPS:

• Construction is time consuming

• Search is time consuming

SAMPLING STRATEGIES HELP IN REDUCING

THE ROADMAP SIZE

EXAMPLE:

• Visibility-PRM

V I S I B I L I T Y - P R M

VISIBILITY DOMAIN OF

CONFIGURATION Q:

q

V I S I B I L I T Y - P R M

A NEW CONFIGURATION

IS RETAINED ONLY IF

OUT OF THE VISIBILITY

DOMAIN OF OTHER

CONFIGURATIONS

V I S I B I L I T Y - P R M

A NEW CONFIGURATION

IS RETAINED ONLY IF

OUT OF THE VISIBILITY

DOMAIN OF OTHER

CONFIGURATIONS

THESE CONFIGURATIONS

ARE CALLED “GUARDIANS”

V I S I B I L I T Y - P R M

A NEW CONFIGURATION

IS RETAINED ONLY IF

OUT OF THE VISIBILITY

DOMAIN OF OTHER

CONFIGURATIONS

OR IF ALLOW TO CONNECT

2 GUARDIANS

THESE CONFIGURATIONS

ARE CALLED “CONNECTORS”

V I S I B I L I T Y - P R M

(THIS IS A 6-DIMENSIONAL C-SPACE IN 3-D)

R R T : R A P I D LY - E X P L O R I N G R A N D O M T R E E S

PRM IS A MULTI-QUERY METHOD: THE SAME ROADMAP IS

REUSED TO SOLVE DIFFERENT QUERIES

RRT IS SINGLE-QUERY: THE PROBLEM IS SOLVED WITHOUT

PRELIMINARY EXPLORATION OF C-FREE

qinit

qgoal

R R T : R A P I D LY - E X P L O R I N G R A N D O M T R E E S

ITERATIVE ALGORITHM:

1. COMPUTE QRAND

2. CONNECT TO QNEAR

3. INSERT QNEW

4. GOTO 1 qinit

qgoal

R R T : R A P I D LY - E X P L O R I N G R A N D O M T R E E S

ITERATIVE ALGORITHM:

1. COMPUTE QRAND

2. CONNECT TO QNEAR

3. INSERT QNEW

4. GOTO 1 qinit

qgoal

qrand

R R T : R A P I D LY - E X P L O R I N G R A N D O M T R E E S

ITERATIVE ALGORITHM:

1. COMPUTE QRAND

2. CONNECT TO QNEAR

3. INSERT QNEW

4. GOTO 1 qinit

qgoal

qrand

R R T : R A P I D LY - E X P L O R I N G R A N D O M T R E E S

ITERATIVE ALGORITHM:

1. COMPUTE QRAND

2. CONNECT TO QNEAR

3. INSERT QNEW

4. GOTO 1 qinit

qgoal

qrand

qnew

R R T : R A P I D LY - E X P L O R I N G R A N D O M T R E E S

ITERATIVE ALGORITHM:

1. COMPUTE QRAND

2. CONNECT TO QNEAR

3. INSERT QNEW

4. GOTO 1 qinit

qgoal

qrand

R R T : R A P I D LY - E X P L O R I N G R A N D O M T R E E S

ITERATIVE ALGORITHM:

1. COMPUTE QRAND

2. CONNECT TO QNEAR

3. INSERT QNEW

4. GOTO 1 qinit

qgoal

qrand

qnear

R R T : R A P I D LY - E X P L O R I N G R A N D O M T R E E S

ITERATIVE ALGORITHM:

1. COMPUTE QRAND

2. CONNECT TO QNEAR

3. INSERT QNEW

4. GOTO 1 qinit

qgoal

qrand

qnew

R R T : R A P I D LY - E X P L O R I N G R A N D O M T R E E S

ITERATIVE ALGORITHM:

1. COMPUTE QRAND

2. CONNECT TO QNEAR

3. INSERT QNEW

4. UNTIL QNEW AND QGOAL CONNECTED qinit

qgoal

G R O W T W O R R T S T O W A R D S E A C H O T H E R

M O R E…

PLANNING ALGORITHMS

STEVEN M. LAVALLE

HTTP://PLANNING.CS.UIUC.EDU/

http://planning.cs.uiuc.edu/

