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The riddle

1 Problem statement

A 1064nm Gaussian laser is tightly focused on a cloud of cold potassium 40 atoms (atomic mass:
39.96u). The closest optical transition has the following properties:

• Wavelength: 770.1 nm

• Linewidth: 2π × 6 MHz

• Saturation intensity: 1.75 mW/cm2

The oscillation frequency of the atoms in the transverse plane around the focal point is measured as
a function fo the laser power:

Laser power (mW) 15.5 25 29 34 40 75 193
Oscillation frequency (Hz) 115 160 145 180 177 256 386

Table 1: Power and oscillation frequency dependency.

Question: What is the radius of the laser beam at its waist?

2 Variables

2.1 Known data and constants

From the problem statement we can extract the following data:

Quantity Variable Value
1 Laser wavelength λL 1064 nm
2 Relevant Transition wavelength of 40K λ0 770.1 nm
3 Atomic mass of 40K m 39.96 amu
4 Linewidth of optical transition ∆ν0 6 MHz
5 Saturation intensity of transition Isat 1.75 mW/cm2

6 Laser power P Table 1
7 Measured transverse oscillation angular frequency ω⊥ Table 1 (frequencies ω⊥

2π )
Physical Constant Label Value

1 Reduced Planck’s constant ℏ 1.055 × 10−34J/s
2 Boltzmann constant kB 1.381 × 10−23m2 kg s−2 K−1

3 Speed of light c 2.998 × 108m s−1

Table 2: Known data and constants

2.2 Sought after variable

The variable we are looking for is:

• w0 - radius of the laser beam at the waist
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3 Model

In our considerations we use the semi-classical model. A sketch of the problem can be seen in Figure
1. Since the laser is red-detuned (δ = 2πc

λL
− 2πc

λ0
= ωL − ω0 < 0), the dipole force creates an attractive

potential about the center of the beam that traps atoms. With the given parameters, we model the
dipole potential as a harmonic oscillator potential and use the frequency of oscillations from the data
to find its gradient. The gradient depends on several known or calculable quantities and one unknown
that is the beam size at the waist which can be found. Although the radiation pressure creates the
opposite effect as the dipole force, it can be neglected since it scales with 1

δ2 while dipole force scales
with 1

δ and we have that the frequency of the laser (ωL = 1.779 · 1015 Hz) is far from the resonant
frequency of the relevant optical transition (ω0 = 2.446 · 1015 Hz), by a value much greater than the
linewidth (2π · 6 MHz).

Figure 1: Sketch of the problem

Since the experiment used a Gaussian laser, we model it with a Gaussian beam profile. The intensity
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of the Gaussian laser beam has the general expression,
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where I0 is the peak intensity at the center of the waist, w0 is the radius at the waist, zR is the
Rayleigh length whose precise expression will not matter, z is the position along the axis parallel to
the laser beam and ρ the radial position (see figure 1). Since the beam is focused to the location of
the trap and the atoms oscillate in the transverse plane, we can set z = 0 and the intensity reduces
to,

I(ρ, 0) = I0e
− 2ρ2

w2
0 . (2)

To relate I0 to the power of the laser P, we need to integrate the laser intensity over the cross section
at z = 0,

P =
∫ ∞
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Thus, we have I0 = 2P
πw2

0
. From the lecture slides and textbook, the potential in the transverse plane

Udip corresponding to the dipoles force is,

Udip(ρ, 0) = ℏΓ2I(ρ, 0)
8Isatδ

= ℏΓ2

8Isatδ

2P

πw2
0

e
− 2ρ2

w2
0 . (4)

Here Isat is the saturation intensity of the transition and Γ = 2π∆ν0 is the spontaneous decay rate
of the transition derived from the Heisenberg uncertainty principle. Assuming small ρ compared to
w0, we perform a Taylor expansion around the origin and obtain a quadratic potential corresponding
to a harmonic oscillator. Taking into consideration that the laser is red-detuned with respect to the
optical transition,

Udip(ρ, 0) = ℏΓ2P

4Isatδπw2
0

(
1 − 2ρ2

w2
0

)
= − ℏΓ2P

4πw2
0|δ|Isat

+ ℏΓ2P

2|δ|Isatπw4
0

ρ2. (5)

Since this resembles a harmonic oscillator of the form Udip(ρ) = U0 + ω⊥ρ2, we have the following
expression for the frequency of oscillations,

ω2
⊥ = ℏΓ2P

π(ω − ω0)mIsatw4
0

= αP, (6)

where α replaces the proportionality constant between ω2
⊥ and P . Thus, the beam radius at the waist

w0 is given by the formula,

w0 =
(

ℏΓ2

π|ω − ω0|mIsatα

) 1
4

. (7)

With all other parameters of Equation 7 already specified, we turn to the data to extract the value
of α. Figure 2 shows the oscillation frequency squared as a function of the laser power. We found a
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Linear Regression fit matches the data with parameter R2 = 0.9315, and since Equation 6 has ω2
⊥ as

linear in P , the model is validated.

Figure 2: Linear fit of the data. Line of best fit: ω2
⊥ = 1416 + 3.003 × 107P

From Figure 2, we find that α = 3.003 × 107 via the linear regression fit. Thus, we finally find that,

w0 = 37.68 µm. (8)

4 Conclusion and extension

We have seen that it is possible to measure the radius at the waist of the laser beam using the os-
cillation frequencies of atoms trapped in the dipole potential generated by this laser. The value we
obtained for the radius of the beam at waist, w0 = 53.28 µm is reasonable as it is much larger than
the wavelength of the laser λL = 1.064 µm and we know that the laser wavelength places a lower
bound on the focusing size of a beam of light due to diffraction. At the same time, the value is of
microscopic dimensions so that it makes sense to use this method to determine the radius at the beam
waist instead of simply measuring it using traditional optical techniques.
To perform the Taylor expansion in Equation 5, we have assumed that the Potassium atoms oscillate
near the center of the laser beam, where we could approximate the potential profile by a harmonic
(quadratic) one. However, if the temperature of the gas of atoms does not have a low enough tem-
perature, some atoms might be able to get to the edges of the traps where the potential tappers off
towards 0 at infinity. We can thus estimate the temperature that the ensemble of Potassium atoms
needs to have in order to be trapped by imposing the condition that the average energy of one atom
is smaller than the depth of the potential well. If we work in two-dimensions (only transverse motion
is considered), the avergae thermal kinetic energy associated to two degrees of freedom is,

Eth = 2 · 1
2kBT. (9)

Equating the binding energy of the potential to the kinetic energy of the atom, we have,
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|U0| = kBTmax. (10)

Here, Tmax is the maximum allowed temperature of the ensemble of atoms. The depth of the potential
well is,

|U0| = ℏΓ2P

4πw2
0|δ|Isat

(11)

and this gives the maximum temperature of potassium atoms that can be trapped:

Tmax = ℏΓ2P

4πw2
0|δ|IsatkB

(12)

For the highest power in the problem (P = 193 µW) we get,

Tmax = 10 µK. (13)

This value is much smaller than room temperature. Moreover it is also an order of magnitude smaller
than the temperature that can be achieved with optical molasses (formula extracted from the lectures):
ℏΓ

2kB
= 144 µK. Since only atoms with energies smaller than kBTmax will remain inside the optical

dipole trap, we see another mechanism to cool down atoms. If we lower the laser power enough we
can achieve much lower temperatures than those achieved with optical molasses. However, there is a
trade-off: while we can achieve very low temperatures, we will lose atoms that have energies larger
than kBTmax.
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