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CHAPTER 1

OVERVIEW OF THE PROBLEM (OR LIDAR
TECH)

This week, we were tasked to analyze the Doppler LIDAR - a device which will allow us to estimate the
speed of wind at different altitudes.

1.0.1 BASICS OF A LIDAR

FIGURE 1.1: Simplified version
of a LIDAR, [1].

LIDAR is an acronym that stands for "laser imaging, detection, and
ranging". It works by emitting a laser pulse towards a target, detects
the light that has been scattered or reflected by our target and then
computes the distance between it and the device. This technique is
visualized in figure 1.1.
LIDARs are usually used for determining distances between two ob-
jects or mapping an area.

1.0.2 BASICS OF A DOPPLER LIDAR

A Doppler LIDAR is a slightly modified version of a simple LIDAR.
Instead of just noting down the time it took for the pulse to come back,
it superimposes the back-scattered / reflected signal with the original
one from the laser. This is then sent to a photo-diode which, produces
a voltage proportional to the beam intensity.

1.0.3 FORMULATION OF THE PROBLEM

In our case, a Doppler LIDAR sends a pulse of λ = 2µm towards the sky. It then outputs the photo-diode
readings. Spectral analysis on short-time windows is then performed. Knowing the the spectral analyses
at t = 10, 50, 75µm, we will estimate the wind speed (along the line of sight) at an altitude of 7.5km.
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CHAPTER 2

OUR INTERPRETATION OF THE PROBLEM

2.0.1 ASSUMPTIONS

In order to solve this problem, we must first make the following assumptions:

• The laser pulse is shot straight upwards with no horizontal component

As we saw before, the laser pulse that was sent up and reflected down is then superposed with the original
laser. Since the frequency of the returning pulse is slightly altered, it no longer resonates with the original
laser beam and generates a beating. This beating is represented in the following data figure :

The two lasers have almost equal frequency but not exactly the same. Thus the beating between them
feature a slowly oscillating envelope and an extremely fast oscillation within that envelope. Since the
photo-diode cannot detect high frequencies, it only reads the shape of the envelope, which is what we see.
When looking at the figure we notice two things : Firstly, the intensity of the signal is decreasing. This
can be explained by the fact that later time correspond to reflections of the pulse that took longer to arrive.
Thus reflections of the pulse that arrive later have travelled a longer distance in the sky and thus have been
more absorbed by the air. The second thing we notice is that the frequency of the beating’s envelope is
increasing. This is actually an important detail since it is directly related to the wind speed. Indeed, a
beating with higher frequency corresponds to a larger difference between the frequency of the original
laser beam and of the reflected laser pulse. Thus laser pulse reflections that arrive later have been more
altered than earlier ones. This is explained by the fact that wind speeds get greater as altitude increases
which a consequence of fluid mechanics and decreasing air density as altitude increases.

However, only using this figure makes measuring the frequency of the beating at our desired time quite
difficult. This is why we are provided three extra figures.
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CHAPTER 2 – OUR INTERPRETATION OF THE PROBLEM

FIGURE 2.1: Drawing of our model

These three figures are the result of applying a Fourier transform around t = 10, 50 and 70 µs. The
frequency at such times are given by the peak of the Fourier transform which makes the measuring of the
frequency trivial.

We now have every elements to compute the final value.
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CHAPTER 3

CALCULATIONS OF THE FINAL VALUE

By sending waves of short duration, we are able to receive the scattered waves by waiting for a certain
time. We consider that each molecule in the atmosphere scatters back another electromagnetic wave of
equal wavelength. However, since said molecules are not necessarily at rest, we must consider the Doppler
shift of the emitted wavelength. Therefore, for v << c, we obtain the frequency of our laser pulse as
perceived by the moving particle at height h:

ωp(h) =
ω0

1 + v(h)
c

Furthermore, the scattered wave is also Doppler-shifted, since the particle is moving. Therefore, the
frequency of the back-scattered wave received by the receiver writes:

ωm(h) =
ωp(h)

1 + v(h)
c

=
ω0

(1 + v(h)
c )2

Since v(h)
c is very small, we can approximate this formula via a Taylor expansion, obtaining:

ωm(h) = ω0(1− 2
v(h)

c
)

The receiver therefore picks up the superposition of our emitted laser pulse and the back-scattered ray,
both of which have very similar frequencies. Therefore, the signal should look like:

E0(cos(ω0t) + cos(ωm(h)t)) = 2E0 cos(
ω0 + ωm(h)

2
t) cos(

ω0 − ωm(h)

2
t)

We observe that the term cos(ω0−ωm(h)
2 t) is the envelope, |ω0−ωm(h)

2 | is the beating frequency. We are
therefore interested in finding this value. It is important to note that the beating frequency is an absolute
value, we thus do not have any information on the direction of the wind speed. Since the intensity is
proportional to the square of the electric field, from the trigonometric identities, we obtain:

I ∝ 4E2
0 cos(

ω0 + ωm(h)

2
t)
cos((ω0 − ωm(h))t) + 1

2

We therefore aim to find the value of |ω0 − ωm(h)|. Since we want to calculate the speed of the wind at
h = 7.5km, we can calculate the amount of time needed for the short laser pulse to reach said height and
back:

t =
2h

c
=

2 · 7.5 · 103m
3 · 108m/s

= 50µs
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CHAPTER 3 – CALCULATIONS OF THE FINAL VALUE

Since we have the spectral analysis of the signal after 50µs, we can obtain an approximate value of
ω0 − ωm(h) by the angular frequency at which the intensity reaches its peak, which is 284.4MHz. Since
ω0 =

2πc
λ0

, from the Doppler effect equation, we obtain the velocity of the wind along the line of sight at
altitude h:

v(h) =
λ0

4π
(ω0 − ωm(h)) =

2 · 10−6m
4π

(284.4MHz) = 45.3m/s
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CHAPTER 4

COMPARISONS AND SOME REMARKS

Note that the usual wind speed lies in the magnitude of 101 to 102 m/s, which indicates that our result
seems reasonable. However, we remark that due to the fact that the spectral pattern we have generates a
finite width, our result carries a potential uncertainty. More precisely, we could read that the width in the
figure before is approximately 0.4 MHz. Since the wind speed is proportionally correlated to the peak
angular frequency obtained around 50 µs, the uncertainty of the wind speed should also be proportionally
correlated to that of the particular angular frequency with the same coefficient, which generates a value of
0.032 m/s. This is less than 1% of the obtained result for the wind speed at 7.5km, which indicates that
this technology gives a rather accurate measurement.

Another noteworthy point is that we have a solid reason to superpose the scattered signal with the
original one. The Doppler effect is so weak that the scattered signal has a very similar frequency as the
original one since the wind travels generally at a velocity far smaller than the light speed. Therefore, the
scattered signal has generally a frequency of magnitude 1014s−1, which is impossible for any machine
available now to measure. However, as we can see in the previous part, the superposition generates a
signal that oscillates at two different angular frequencies, with one being the average of the sum of the two
frequencies, which is still very large and the other being the average of their difference, which is much
smaller. The large frequency will function as the chaos of the signal and we end up only with the smaller
frequency by smoothing the obtained pattern, enabling the machine to perform the spectral analysis and
provide the pattern we need.
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