
Corrections

Part 1. Housing Energy Consumption (4 points)

1. Energy losses though the envelope.

We have j⃗Q=−λ ∇⃗ T ⇒ JQ=
ΔT
R

.

Assuming a flat root, the wall surface is Sw=(7+10)×5×2=170 m
2  and the roof surface

Sr=7×10=70m
2 . More realistically the roof surface can be taken to be Sr∼100m

2 , and
the wall surface could be increased a bit. 

For  the  thermal  resistances  given  in  the  subject  and  a  wall  and  roof  areas  of
respectively  ∼170m2  and ∼100m2  one obtains:

The  annual  energy  losses  through  the  envelope,  ignoring  the  ground,  amounts  to
∼10500kWh /yr .  This was obtained without taking into account the boundary layer.
When  adding  0,17  to  the  resistance  to  take  that  layer  into  account,  the  total
consumption goes down to ∼10000kWh /yr .

2. Energy losses through the ventilation

Energy losses can be expressed as function of the mass flow ṁ : P=(1−η)×ṁ×c×ΔT

where η=0,8  is the efficiency of the heat recovery system. Indeed, a fraction η  of the
heat available in the air is recovered, thus only a fraction 1−η  needs to be brought by
the heating system. The mass flow is taken to be 0,6 volume of the house per hour, the
volume  being  approximately  V∼7×10×5=350m3 :  ṁ=0,6×ρair×V /1 hr .  With  the
values in the subject, one obtains the following losses:

Total losses through the ventilation system: ∼1900kWh /yr
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-10,3 -6,3 -3,4 3,5 9,4 13,3 16 15,1 10,3 5,6 -2,4 -6,9
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W
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9,9 8,5 7,5 5,2 3,2 1,9 1,0 1,3 2,9 4,5 7,2 8,7
Power (W) 1677 1448 1282 887 549 326 172 223 498 767 1225 1482

1247,8 973,2 953,9 638,8 408,8 234,9 127,8 166,1 358,5 570,7 881,9 1103,0
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466,8 364,1 356,9 239,0 152,9 87,9 47,8 62,1 134,1 213,5 329,9 412,6
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3. Total energy needs:

Compared to classical houses, the losses though the envelope are reduced by ~30%,
and corresponds therefore to about ∼7000 kWh/ yr . The total energy needs are about
∼10000kWh /yr .

Part 2. Thermal Solar Collectors (8 points)

1. Power reaching the collector

The power reaching the collector is:

Psun=w×L×f×
Ωs
π ×σT sun

4
≈179W (Eq. 2.1)

Without concentration the temperator of the collector will be way too low to allow for a
thermodynamical machine to work.

2. Coolant temperature

2.a. The absorbed power reads

PA=a×Psun=a×w×L×f×
Ωs
π ×σTsun

4  (Eq. 2.2)

The radiated power is (under approximation of emissivity equal to absorbency):

PR=a×w×L×σTmax
4  (Eq. 2.3)

And the balance gives:

Tmax=T sun( f×
Ωs

π )
1/4

=354K≈81°C  (Eq. 2.4)

2.b. Coolant + fluid: The balance is now for a slice [z , z+d z ] :

d Pcool=d PA−d PR=aP sun×(1−(
T cool
Tmax )

4

)×d zL  (Eq. 2.5)

2.c. Distribution of temperature: the idea is to make an energy balance between times
t  and t+d t  for a slice [z , z+d z ] :

The energy entering the control volume during d t  can be expressed as:

dU=Pcool
d z
L
×d t  (Eq. 2.6)

Under assumption of equilibrium (permanent regime), this energy is transmitted to
the fluid, leading to an increase of temperature:

dU=ṁ×d t×c×(T (z+d z)−T (z ))=ṁ×c×
d T
d z
d z d t  (Eq. 2.7)

Equating the two expressions, one obtains:

ṁ×c×
dT
d z
=a×w×f×

Ωs
π ×σTsun

4
×(1−(

Tcool
Tmax )

4

)  (Eq. 2.8)

Which can be rewritten as: 
z s
Tmax

dT
d z
=1−(

T ( z)
Tmax )

4

 (Eq. 2.9)
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with:  
zs=
ṁ×c×L×Tmax

a Psun
=

ṁ×c×Tmax

a×w× f×
Ωs
π
×σT sun

4
≈21.4 m

 (Eq. 2.10)

2.d. We define u=z / zs  and y=T /Tmax . We then have 

1
Tmax

dT
d z
=
1
Tmax

dT
du
×
d u
d z
=
1
zs
× y (u)  (Eq. 2.11)

So that Eq. 2.9 can be rewritten simply as: 
d y
du
=1− y4 (u)  (Eq. 2.12)

2.e. For Tmax=354K ,  thus  T (0)/Tmax=0.91 ,  which  from  the  graph  in  Fig. 4
corresponds  to  u0=1.139 .  Moreover zs=21.4m (Eq. 2.10).  One  obtains   then
u(L)=u0+L/ zs=1.256  which  corresponds  to  y (L)=0.942 .  Finally  one  has:
T (L)=334 K=61°C

3. Overall collection Efficiency

3.a. Using the same energy  balance  as  before,  but  taking into  account  the  whole
collector, the power given to the fluid is:

Pcool=(T (L )−T (0 ) )×ṁ×c (Eq. 2.13)

To be compared to the incident solar power: 

Psun=w×L×f×
Ωs
π ×σT sun

4  (Eq. 2.14)

The net effiency is the ratio of the two:

ηcool=
Pcoll
Psun

=
(T (L )−T (0 ) )×ṁ×c

w×L×f×
Ωs
π ×σT sun

4
=...=a

T (L )−T (0 )
Tmax

zs
L  (Eq. 2.15)
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3.b. Assuming a=1 , one obtains: ηcoll≈26%

4. Total collected energy:

The solar irradiance gives the total received energy per house:

Phouse=5.45GJ/m
2
/year×w×L=272GJ/house /year

Inserting  the  collection  efficiency  ( ηcoll≈32% ),  we  find  a  collected  energy  of
87GJ/ house/ year .  For  the  whole  community  (52  houses),  this  corresponds  to
∼4500GJ/year  for a litterature value of ∼4000GJ/yr

17



Part 3. Inter-seasonal Thermal Heat Storage (8 points)

1. Dimensionning

The average ground temperature (avereged over the years using the values from Fig. 2)
is T avg=3.6°C . The total capacity is for 52 houses:

V×c×(Tmax−T avg)=6000GJ

corresonding to one and half year of heat production. Note that a significant fraction of
the heat stored during the summer is used during the next winter, to the whole storage
will take several years to fully load (typically 3-4 years).

2. Diffusion equation

The diffusion equation reads:

μ c
∂T
∂ t
+div j⃗Q=0

j⃗Q=−λ ∇⃗ T
} ⇒

∂T
∂ t
= λ
μc
∇
2T , D= λ

μc  (Eq. 3.1)

3. Dimensionless parameter

Dimentionless parameter: u=
x

√Dt
 (Eq. 3.2)

Propagation distance scales as the square root of the time. For the values given in the
table, one obtains D=8.7×10−7m2/s  and the following diffusion time curve:

Orders of magnitudes

The following conclusions can be derived:

• In order for the temperature to be ~ homegeneous in the borehole after a few
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Figure 9: Diffusion distance as function of time



monthes, the distance between the boreholes should be of the order of ~2 m

• The heat does not really leak out of the storage in the first years (the diameter of
the storage is ~ 35 m)

• Boreholes should be > 6 m from the edges of the borehole so that heat stays inside

• For one day, the diffusion distance is only ~20 cm, so that the temperature during
the charging time is strongly inhomogeneous

4. Homogeneous equation

∂T
∂ x
=
∂T
∂ u
∂u
∂ x
=
1
√D t

∂T
∂u

∂T
∂ t
=
∂T
∂ u
∂u
∂ t
=
−u
2t
∂T
∂u

} ⇒
∂
2T

∂ u2
=−
u
2
∂T
∂u  (Eq. 3.3)

5. Homogeneous solution

Solution:

g '=−
u
2
×g ⇔

d g
g
=−

udu
2

⇔ g(u)=C×exp (−u
2

4 )  (Eq. 3.4)

The temperature is then, after inserting the proper boundary conditions:

T (u)=T 0+C×∫0
u
exp(− v

2

4 )d v=T 0+(T 1−T 0)×erf (
u
2 )=T 0+(T 1−T 0)×erf (

−x2

4D t )  (Eq. 3.5)

6. Heat flux and thermal effusivity:

The heat flux is:

jQ=−λ
∂T
∂ x
=−λ

∂T
∂u
∂u
∂ x
= −λ

√Dt
(T1−T0)exp(−x

2

4D t )  (Eq. 3.6)

In particular, the heat extracted from the tubes ( x=0 ) decreases with time as:

jQ(x=0)=
λ

√D t
(T 0−T 1)=√λμc

(T 0−T1)

√t
=e (T 0−T 1)  (Eq. 3.7)

The term e=λ /√D=√λμc  is called thermal effusivity, and characterises the ability
of one body to exchange energy. 

The energy stored in the BTES is the integral over time of the heat flux. It varies as:

Q=2e (T 0−T 1)×√t  (Eq. 3.8)

7. For the soil and the insulation layer, we obtain the following values:
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The values of the diffusion coefficients are pretty similar, but the effusivity is a factor 60
smaller  in  the insulation  layer.  A high  value of  thermal  effusivity  indicates  that  the
medium can absorb a large heat content without changing its temperature. A low value
indicates that the temperature will change rapidly when two bodies are put in contact.
The diffusion coefficient only indicates how fast the equilibrium is reached: for XPS
insulation, the thermal equilibrium is reached rather fast, but the amount of energy
going through the insulator is 60 times less than that going through the same thickness
of soil.

8. Various comments:

• Energy injected into the  BTES seems to be rather  stable  with  time,  instead of
square root.  As we reach equilibrium, this is  more or less expected, but in the
transition phase the injected energy should scale as square root of time

• Energy extracted from the BTES rises during the first years, as the total energy
loaded in the BTES is too low: the system needs several years to operate in a stable
manner.

• Average temperature rises with time and becomes ~ rather stable after 3-4 years:
this is the time needed to fully load the BTES.

• Annual  oscillations  of  temperature  correspond  to  the  loading/unloading  cycle,
whereas the average trend corresponds to the multi-year loading
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Soil XPS
Thermal Conductivity 2 0,03
Massive heat capacity 1,5
Density 30
Volumic heat capacity 2300 45
Diffusion Coefficient 8,70E-07 6,67E-07
Effusivity 2144,8 36,7

(W/m/K)

(kJ/kg/K)

(kg/m3)

(kJ/m3/K)

(m2/s)

(J/K/m2/s1/2)



Part 4. Alternative Heat Pump heating (5 points)

1. Pressure-enthalpy diagram

1.a. different sides of the solid line

1.b. For  an  ideal  gas:  dH=C dT  inpependantly  of  pressue.  Isothermal  lines  are
vertical in single phase regions. In phase transition regions, temperature is also
constant.

1.c. The horizontal lines give the enthalpy differences. One obtains about 200kJ /kg ,
which is about 10 times less than water.

2. Heat Extraction

2.a. The goal is to extract heat from the cold source and give it to the hot one. The
cycle needs to be operated in the direct (anti-clockwise) direction, from 2 to 1.

2.b. Individual transformations:

▪ Isentropic compression: 3 → 2

▪ Isentropic expansion: 1 → 4

▪ Isobaric heating: 4 → 3

▪ Isobaric cooling: 2 → 1

2.c. Relation between enthalpy & work:

ΔH=W +Q⏟
=0

=W
 (Eq. 4.1)

2.d. Vapor fraction at point 4:

A constant enthalpy evolution corresponds to a vertical line on the diagram. One
has during a phase change:

h=(1−x )×h liquid+x×hgas  where x  is the gaz fraction. Here,  with h=−210kJ /kg ,
hliquid=−250  and  hgas=−40 , one finds  x=0.19 , compatible  with the value read
out directly from the graph.

2.e. Filled table:

1 2 3 4
T (K) 15°C 30°C 5°C -10°C
p (bar) 5.8 5.8 2 2

h (kJ/kg) -210 -2 -25 -210
Phase Liquid Gaz Gaz 20% gaz,

80% liquid

2.f. Work and heat are read horizontally, from the enthalpy difference for each 
transformation:

W (3→2)=23kJ /kg , Q(2→1)=208kJ /kg , η=
Q (2→1)
W (3→2)

≈9.0  (Eq. 4.2)

The Carnot efficiency for the same temperatures would be:
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ηCarnot=
T H

T H−T L
=

293
293−263

=9.7  (Eq. 4.3)

2.g. In the previous question, we counted to work effectively delivered to the fluid. 
Efficiency of the compressor ~0.4 – 0.7 has to be taken into account in the overall
efficiency.

2.h. Raising the curve from -10°C to 0°C reduces the compressing work (3 2). As a →
crude approximation, the temperature difference is scaled by 2/3, so is the work. 
The CoP is increased by roughly 3/2, reaching a maximum of ~13.5 and a realistic
value around 7~8.

3. 21 000kWh = 77 GJ. CoP : 2360/77= 30.

4. Coolants used in heat pumps such as R134a are toxic for the ozone layer and strong 
greenhouse gases (factor 1430 more than CO2 for R134a). In contrast, Drake Landing 
uses only water.
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