PHY 555 Energy and environment Final exam Friday, December $11^{\text {th }} 2020$

Lecture notes allowed, duration 3h
Note 1: All parts of the problem are independent, and results given in previous questions can be used without being demonstrated.

Note 2: Quality of the redaction of justification of calculation will be taken into account in the evaluation. Answers can be written in French or in English.

Note 3: The physical constants needed in the problem are grouped in tables at the end of the subject.
Note 4: You don't need to do everything to have 20/20! Start with the topics you feel most familiar with.
Note 5: There is no need to copy the question text. Just identify them by their numbers.
Note 6: Lecture notes and small class documents (notes and slides) are allowed as well as French-English dictionary. No other document is allowed.

Note 7: Documents mentioned above might be consulted in a digital form on a tablet/computer, but the device (and other devices with connection capabilities, such as phones, calculator, ...) must be put in flight mode. No Wifi connection is allowed.

1 Energy balance

The Sankey graph in Figure 1 shows the primary, final and useful energy consummed in the United States over the year 2019. Values are given in Quad. 1 Quad is defined as a quadrillion of British Thermal Unit (BTU), 1 BTU being the imperial equivalent of a calorie (ie the energy required to increase the temperature of one pound of water by on degree Fahrenheit). In decent units, 1 Quad roughly equal to $10^{18} \mathrm{~J}$ or 25 Mtoe.

Estimate and comment the following quantities (half of the points will be attributed for the correct numerical values, the other half on relevant comments) :

1. Average conversion efficiency of power plants

On 37 Quads, $(0.65+2.48+2.73=) 5.9$ are produced from non-thermal sources. The efficiency is thus

$$
\begin{equation*}
\frac{12.7-5.9}{37-5.9}=45.7 \% \tag{1}
\end{equation*}
$$

If we forget to remove non-thermal sources from the calculation, we find

$$
\begin{equation*}
\frac{12.7}{37}=29 \% \tag{2}
\end{equation*}
$$

Compare to Carnot efficiency, with a typical temperature of $\sim 600^{\circ} \mathrm{C}$ for gas and coal thermal plants

$$
\begin{equation*}
\eta=1-\frac{273+20}{273+600}=66 \% \tag{3}
\end{equation*}
$$

L Lawrence Livermore
Estimated U.S. Energy Consumption in 2019: 100.2 Quads

Figure 1: Estimated U.S. energy consumption in 2019, Lawrence Livermore National Laboratory.
or to Curzon Alhborn efficiency

$$
\begin{equation*}
\eta=1-\sqrt{\frac{273+20}{273+600}}=42 \% \tag{4}
\end{equation*}
$$

2. Share of renewable sources in the electrical mix

Taking solar, wind, hydro, biomass and geothermal into account

$$
\begin{equation*}
\frac{0.65+2.48+2.73+0.14+0.45}{37}=17.5 \% \tag{5}
\end{equation*}
$$

Remains small as compared to fossil fuels, but becomes non negligible. Hydro and wind are by far the largest contributors.
3. Average car engine efficiency

Ratio between final and useful energy for transportation :

$$
\begin{equation*}
\frac{5.93}{28.2}=21 \% \tag{6}
\end{equation*}
$$

Carnot efficiency (self ingnition around $500^{\circ} \mathrm{C}$) : 62%
4. Average final energy per capita

330 millions inhabitants in the US, (11.9+9.4+26.4+28.2=) 75.9 quad $=1910$ Mtoe $=5.8$ toe $/ \mathrm{cap}$
To be compared to France: 2.28 toe/cap, or world 1.4 toe / cap
5. Surface occupied by solar panels

Average solar power: 0.65 quad $/ \mathrm{yr}=20 \mathrm{GW}$. Average illumination (from the PC on solar energy) : 150 $\mathrm{W} / \mathrm{m} 2$. Solar module efficiency (idem) : $20 \% \Rightarrow 700 \mathrm{~km} 2$. The US are 10 millions km^{2}
6. CO_{2} emission from fuel combustion, in MtCO_{2}, considering that 25% of oil is not actually consummed, but exported.
using IPCC data

$$
\begin{equation*}
(32.1 \times 56+11.4 \times 94+5 \times 112+37 \times 0.75 \times 73) \times \frac{10^{18} \times 10^{-12}}{10^{6} \times 10^{3}}=5.5 \mathrm{GtCO} 2 \tag{7}
\end{equation*}
$$

The world emits around 35 GtCO 2 per year - the US alone emit 20% of this total.

2 Problem: CO_{2} capture and storage

As the concentration of CO_{2} increases in the atmosphere, strategies evolve to attenuate climate change and prevent global warming for reaching values above $+2^{\circ} \mathrm{C}$ as compared to the pre-industrial period. According to the special report of the IPCC on a "Global Warming of $1.5^{\circ} \mathrm{C}^{\prime}$, it will not be sufficient to reduce emissions, and active CO_{2} capture will be mandatory:
"All pathways that limit global warming to $1.5^{\circ} \mathrm{C}$ with limited or no overshoot project the use of carbon dioxide removal (CDR) on the order of 100-1000 GtCO_{2} over the 21st century. CDR would be used to compensate for residual emissions and, in most cases, achieve net negative emissions to return global warming to $1.5^{\circ} \mathrm{C}$ following a peak (high confidence)." (IPCC, SR15, SPM (2019)).

Several approaches are considered to achieve CDR. In this problem, we will focus on Carbon Capture and Storage (CCS) and investigate the three main steps of the process: the selective removal of CO_{2} from a gasflow, the transportation of liquified CO_{2} and the sequestation of CO_{2} either in the ocean or underground.

2.1 Orders of magnitude

1. Knowing that the atmospheric pressure at sea level is $1 \mathrm{bar}\left(=10^{5} \mathrm{~Pa}\right)$, show that the mass of the atmosphere is around $5 \times 10^{18} \mathrm{~kg}$.

$$
\begin{array}{r}
P(\text { sol })=\int_{\text {atmosphere }} \rho(z) g d z \text { et masse }=S_{\text {Earth }} \int_{\text {atmosphere }} \rho(z) g d z \\
 \tag{8}\\
m=4 \pi R_{T}^{2} p_{0}=5.1410^{18} \mathrm{~kg}
\end{array}
$$

2. Estimate the number of air moles in the atmosphere, considering that the air is essentially di-nitrogen and di-oxygen molecules.
Air molar mass : $0.8 \times 28+0.2 \times 32=29 \mathrm{~g} / \mathrm{mol}$ so $N_{\text {atmo }}=1.810^{20}$ moles
3. In the pre-industral period, carbon dioxyde represented 280 ppm (parts per million) of the atmosphere composition. Estimate the carbon content of the atmosphere. Express your answer in gigatonne of carbon GtC (be careful not to confuse GtC with GtCO_{2} !)

Carbon mass

$$
\begin{equation*}
\frac{280}{10^{6}} \times N_{\text {atmo }} \times 12 \mathrm{~g} / \mathrm{mol}=600 \mathrm{GtC} \tag{9}
\end{equation*}
$$

4. The total anthropic CO_{2} emissions until 2018 are estimated to $2200 \mathrm{GtCO}_{2}$. By the end of 2017, carbon dioxyde concentration raised to 405 ppm . Estimate the fraction of carbon from anthropic emissions that has been removed from the atmosphere. Comment the result.
$2200 \mathrm{GtCO} 2 \rightarrow 2200 \times \frac{12}{44}=600 \mathrm{GtC}$ emitted. Increase of ($405-180=$) $125 \mathrm{ppm} \rightarrow 268 \mathrm{GtC}$. The difference (332 $\mathrm{GtC},=55 \%$ of total emissions) has been removed from the atmosphere through carbon sinks. The IPCC targets (removing 100-1000 GtCO2) is about the same amount as the cumulation of all natural removals.
5. One of the main natural carbon sink is the Ocean. Assuming that the first $\sim 100 \mathrm{~m}$ of the Ocean are in chemical equilibrium with the atmosphere and considering the vapour pressure diagram provided in appendix, estimate the concentration in $\mathrm{g} / \mathrm{m}^{3}$ of CO_{2} dissolved in surface waters.
Saturation vapour pressure $=60$ bar. Partial pressure for CO2 in the atmosphere $=1 \times \frac{400}{10^{6}}$ bar. Fraction of CO 2 in water : $x=\frac{4.10^{-4}}{60}=6.6 \mathrm{ppm} .1 \mathrm{~m}^{3}$ of water contains $\frac{10^{6}}{18}$ moles of water, so $6.6 \times 10^{-6} \times \frac{10^{6}}{18} \simeq 1 / 3$ moles of CO 2 , corresponding to 16 g of CO 2 .
6. Evaluate the amount of CO_{2}, in GtCO_{2}, currently stored in the surface waters of the Ocean.
80% of Earth surface is covered with Océans $\rightarrow V=0.8 \times 4 \pi R_{T}^{2} \times 100=4.10^{16} \mathrm{~m}^{3}$, corresponding to 660 GtCO2.
7. Comment on the evolution of this storage in the context of climat change.

Increasing partial pressure of CO 2 in the atmosphere \rightarrow more CO 2 stored in water at equilibrium. But increasing temperature \rightarrow increase saturation vapour pressure \rightarrow decrease the amount of CO 2 . Need also to take into account chemistry : more CO 2 increases pH , which shifts equilibrium with carbonates.

$2.2 \quad \mathrm{CO}_{2}$ capture

In this section, we will estimate the energy required to extract a mole of CO_{2} directly from a gas stream. All gases will be considered as ideal.

1. Consider N moles of an ideal gas undergoing an isothermal compression from pressure p_{i} to p_{f}. Show that the entropy of the system changes by

$$
\begin{equation*}
\Delta S=N R \log \frac{p_{i}}{p_{f}} \tag{10}
\end{equation*}
$$

where $R=8.314 \mathrm{~J} / \mathrm{K} / \mathrm{mol}$ is the ideal gas constant.
$d U=C_{V} d T=0=-p d V+T d S \rightarrow d S=\frac{N R T}{T} \frac{d V}{V} \rightarrow \Delta S=N R \log \frac{V_{f}}{V_{i}}=N R \log \frac{p_{i}}{p_{f}}$

1. Consider two compartments with identical temperature T and pressure p, containing initialy N_{1} moles of gas 1 and N_{2} moles of gas 2 respectively. The wall between the compartments is opened, and gases can mix. Estimate the entropy created in the process.

Entropy is an extensive parameter: $\Delta S=\Delta S_{1}+\Delta S_{2}$. Initial pressure for gas $1=\mathrm{p}$; finale pressure $=\mathrm{p}$, partial pressure for gas $1: \frac{N_{1}}{N_{1}+N_{2}} p$, thus

$$
\begin{equation*}
\Delta S_{1}=N_{1} R \log \frac{N_{1}+N_{2}}{N_{1}} \tag{11}
\end{equation*}
$$

idem for gas 2 , leading to

$$
\begin{equation*}
\Delta S_{\text {mix }}=-N R(x \log x+(1-x) \log (1-x))>0 \tag{12}
\end{equation*}
$$

2. Estimate the minimal amount of work required to separate a mixture of N_{1} moles of gas 1 and N_{2} moles of gas 2 into two seperate pure systems at constant temperature T and pressure p.
$Q \leq T \Delta S=-T \Delta S_{\text {mix }}$ and $\Delta U=W+Q=0$

$$
\begin{equation*}
W \geq-N R T(x \log x+(1-x) \log (1-x)) \tag{13}
\end{equation*}
$$

3. Consider a gas containing a molar fraction x of CO_{2}. In the low concentration regime, show the minimal energy $W_{1 \text { mole } \mathrm{CO}_{2}}$ required to extract 1 mole of CO_{2} from such a gas can be written as:

$$
\begin{equation*}
W_{1 \text { mole } \mathrm{CO}_{2}} \simeq-R T(\log x-1) \tag{14}
\end{equation*}
$$

Filtering N moles costs W and brings $x N$ moles of pure CO_{2}

$$
\begin{align*}
W_{1 \text { mole CO }_{2}} & =-R T\left(\log x+\frac{1-x}{x} \log (1-x)\right) \tag{15}\\
& \simeq-R T(\log x-1) \tag{16}
\end{align*}
$$

4. Direct Air Capture consists in capturing CO_{2} from the ambient atmosphere.
(a) Using previous results, evaluate in kWh the minimal energy W_{0} required per kilogram of captured CO_{2} from ambient air.
Numerical applicaiton with $x=400 \mathrm{ppm}: 22 \mathrm{~kJ} / \mathrm{mol}=0.13 \mathrm{kWh} / \mathrm{kgCO} 2$.
(b) Real processes for CO_{2} capture require much more work than the thermodynamic limit evaluated in the previous question. We denote η the ratio between the thermodynamic limit W_{0} and the quantity of energy actually required to extract a kilogram of CO_{2}. Furthermore, the energy used to capture the CO_{2} might produce emission itself, which have to be taken into account in the balance. Considering that this energy is provided by a power source emitting I tons of CO_{2} per kWh , estimate the energy cost per net kilogram of captured CO_{2}.
The total energy required to capture 1 kgCO 2 from ambient air and the emissions due to the energy production is

$$
\begin{equation*}
W_{\mathrm{tot}}=\frac{W_{0}}{\eta}\left(1+W_{\mathrm{tot}} \times I\right) \Rightarrow W_{\mathrm{tot}}=\frac{W_{0} / \eta}{1-I W_{0} / \eta} \tag{17}
\end{equation*}
$$

(c) The following table is reproduced from "Economic and energetic analysis of capturing CO_{2} from ambient air" by K. House et al, PNAS, vol. 108 (2011). Considering a efficiency η as small as 0.05 , evaluate the cost of the required for air capture in $\$$ per tCO_{2} avoided for each of these technologies.

	Conventional coal	Natural gas-fired combined cycle	Advanced nuclear	Biomass	Hydro
Cost [\$/MWh]	95	84	110	107	115
CO_{2} intensity $\left[\mathrm{tCO}_{2} / \mathrm{MWh}\right]$	1	0.4	0	0.2	0
$\$ / \mathrm{tCO} 2$	$I W_{0} / \eta>1$	$I W_{0} / \eta>1$	305	668	319

5. Rather than Direct Air Capture, it is also possible to capture CO_{2} in the exhaust gases of a combustion process. Consider for instance a combustion process under atmospheric conditions, assuming every dioxygen molecule reacts with a carbon atom to form a CO_{2} molecule. Using previous results, estimate the energy required to isolate $1 \mathrm{kgCO}_{2}$ from the exhaust gas of this reaction. Comment this result.
$80 \mathrm{~N}_{2}+20 \mathrm{O}_{2}+$ fuel $\rightarrow 80 \mathrm{~N}_{2}+20 \mathrm{CO}_{2}+$ water $+\ldots$ so the CO 2 concentration is now 20%, instead of 400 ppm . The energy is reduced to $6.2 \mathrm{~kJ} / \mathrm{mol}=0.04 \mathrm{kWh} / \mathrm{kg}, 3$ to 4 times less than before.

$2.3 \quad \mathrm{CO}_{2}$ Transport

To transport the pure CO_{2} from the capture site to the storage site, the gas has to be turned into a condensed phase, which requires a compression step. To describe this process, we consider the compressor as an open system (see figure below). A volume V_{1} of gas is injected at pressure p_{1} and temperature T_{1} and a volume V_{2} is extracted at pressure p_{2} and temperature T_{2}. This process is considered adiabatic and reversible.

1. Evaluate the work $W_{\text {operator }}$ that has to be provided to the compressor in order to perform a compression from p_{1} to p_{2} for 1 kg of CO_{2}. Express your answer as a function of T_{1}, p_{1}, p_{2} and the adiabatic factor γ.
Easy way : enthalpy balance.

$$
\begin{align*}
\Delta H & =W_{o p}=C_{p} \Delta T \tag{18}\\
T_{1}^{\gamma} p_{1}^{1-\gamma} & =T_{2}^{\gamma} p_{2}^{1-\gamma} \tag{19}
\end{align*}
$$

Pedestrian way: Balance on the closed system with control volume and what enters / leaves the control volume over the balance duration:

$$
\begin{align*}
\Delta U & =\underbrace{\Delta U_{\text {control }}}_{=0}+\Delta U_{\mathrm{in}}+\Delta U_{\mathrm{out}}=W_{p}+W_{o p}+\underbrace{Q}_{=0} \tag{20}\\
W_{p} & =-\int p d V=p_{1} V_{1}-p_{2} V_{2} \tag{21}\\
\Rightarrow W_{o p} & =\Delta(U+p V)=\Delta H=\frac{N \gamma R}{\gamma-1}\left(T_{2}-T_{1}\right)=\frac{\gamma}{\gamma-1}\left(p_{2} V_{2}-p_{1} V_{1}\right) \tag{22}
\end{align*}
$$

quasistatic and adiabatic $\Rightarrow p_{1} V_{1}^{\gamma}=p_{2} V_{2}^{\gamma}$ leading to

$$
\begin{equation*}
W_{o p}=\frac{\gamma}{\gamma-1} N R T_{1}\left(\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}}-1\right) \tag{23}
\end{equation*}
$$

2. A first option is to compress directly CO_{2} from atmospheric pressure to 11 MPa . Estimate the energy required for this process. In which state is the CO_{2} at the end of the process?
Numerical application : $20.7 \mathrm{~kJ} / \mathrm{mol}=470 \mathrm{~kJ} / \mathrm{kg}$. Final temperature $: T_{2}=T_{1}\left(p_{1} / p_{2}\right)^{(1-\gamma) / \gamma}=584^{\circ} \mathrm{C} \rightarrow$ supercritic phase according to the phase diagram.
3. A second option is to compress the CO_{2} to 20 bar at $25^{\circ} \mathrm{C}$, then to cool it down until it liquifies. Evaluate the energy $W_{2 \text {,compress }}$ required to to compress $1 \mathrm{kgCO}_{2}$ from 1 bar to 20 bar. Estimate the amount heat to be then removed to cool down and liquify the system. Deduce the minimal amount of work $W_{2, \text { cool }}$ for this stage, and express the total energy W_{2} required for the second option.
Numerical application with the same formula : $W_{2, c o m p}=10.6 \mathrm{~kJ} / \mathrm{mol}=240 \mathrm{~kJ} / \mathrm{kg}$. Final temperature $=$ 310 K . On the diagram, liquefaction occurs at $\sim 260 \mathrm{~K} \rightarrow$ needs cooling of $50 \mathrm{~K}\left(\Delta H=C_{p} \Delta T=1.8 \mathrm{~kJ} / \mathrm{mol}=\right.$ $42 \mathrm{~kJ} / \mathrm{kg}$), then liqufaction provides $330 \mathrm{~kJ} / \mathrm{kg}$. An energy of $\sim 370 \mathrm{~kJ} / \mathrm{kg}$ has to be removed, which can be done at maximal efficiency with a Carnot refrigerator

$$
\begin{equation*}
\eta=\frac{T_{\text {hot }}-T_{\text {cold }}}{T_{\text {cold }}}=\frac{50}{250}=20 \% \tag{24}
\end{equation*}
$$

so the work required is $W_{2, \text { cool }}=0.2 \times 370=74 \mathrm{~kJ} / \mathrm{kg}$. The total energy cost of the second approach is $W_{2}=314 \mathrm{~kJ} / \mathrm{kg}$.
4. Comment on these two options.

The second option is less energy intensive than the first one, but requires CO 2 to be kept refrigerated at $-20^{\circ} \mathrm{C}$ which is an significant constraint.
5. Under liquid form with a viscosity η, the CO_{2} is now injected in a pipeline of radius a to be transported to the storage site. We note $\mathbf{v}=v(r, \theta, z, t) \mathbf{u}_{\mathbf{z}}$ the fluid velocity field, assumed to be monodirectional. For the
sake of simplicity, we will treat CO_{2} as an incompressible fluid. We remind the Navier-Stokes equation

$$
\begin{equation*}
\rho\left(\frac{d \mathbf{v}}{d t}+(\mathbf{v} \cdot \operatorname{grad}) \mathbf{v}\right)=-\operatorname{grad} p+\eta \Delta \mathbf{v} \tag{25}
\end{equation*}
$$

(a) Performing a simple balance, show that the velocity field and specific mass of the fluid satisfy the continuity equation:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\operatorname{div}(\rho \mathbf{v})=0 \tag{26}
\end{equation*}
$$

(b) Show that the stationnary velocity field depends only on r.
$\partial_{\theta} v=0$ by symmetry. Continuity equation: $\partial_{t} \rho+\operatorname{div} \rho \mathbf{v}=0$. Incompressible : $\operatorname{div} \rho \mathbf{v}=\rho \operatorname{div} \mathbf{v}$. stationnary: $\partial_{t} \rho=0$ so $\operatorname{div} \mathbf{v}=0 \Rightarrow \partial_{z} v=0$.
(c) Show that the pressure field depends only on z, and decreases linearly over the pipeline length.

Navier stockes $:(v . \nabla) \mathbf{v}=v_{z} \partial_{z} \mathbf{v}=0$ so $\nabla p=\eta \Delta \mathbf{v}=\left(\begin{array}{c}0 \\ 0 \\ \frac{1}{r} \frac{d}{d r}\left(r \frac{d v}{d r}\right)\end{array}\right)$ and p depends only on z. We have therefore

$$
\begin{equation*}
\partial_{z} p=\eta \frac{1}{r} \frac{d}{d r}\left(r \frac{d v}{d r}\right) \forall(r, z) \tag{27}
\end{equation*}
$$

which is possible only if $\partial_{z} p=$ cste.
(d) Deduce that the velocity field follows the Poiseuille's law:

$$
\begin{equation*}
v_{z}(r)=\frac{1}{4 \eta} \frac{\partial p}{\partial z} \times\left(r^{2}-a^{2}\right) \tag{28}
\end{equation*}
$$

With similar arguments : $\frac{1}{r} \frac{d}{d r}\left(r \frac{d v}{d r}\right)=\mathrm{cst}=\partial_{z} p$ so

$$
\begin{align*}
\frac{d v}{d r} & =\partial_{z} p \times \frac{r}{2 \eta}+\frac{A}{r} \tag{29}\\
v & =\partial_{z} p \times \frac{r^{2}}{4 \eta}+A \log r+B \tag{30}
\end{align*}
$$

and the boundary condition $\mathrm{v}(\mathrm{a})=0$ leads to the expression
(e) Show that the volumic flow rate Q follows de Hagen-Poiseuille's law:

$$
\begin{equation*}
Q=-K \frac{\partial p}{\partial z} \tag{31}
\end{equation*}
$$

and give the expression of K.

$$
\begin{align*}
Q & =\int v d S=2 \pi \int v(r) r d r \tag{32}\\
& =\frac{1}{4 \eta} \frac{\partial p}{\partial z} \times\left(\frac{a^{4}}{4}-\frac{a^{2}}{2} a^{2}\right)=-\frac{\pi a^{4}}{8 \eta} \partial_{z} p \tag{33}
\end{align*}
$$

(f) Evaluate the power dissipated when maintain a volumic flow rate Q in a pipeline of radius a and length L. Comment your result.

Energy balance on the closed system composed of the tube + what gets in or out over the duration of the balance

$$
\begin{equation*}
\Delta U=\Delta_{i n t} U+p(0) Q d t-p(L) Q d t=0 \tag{34}
\end{equation*}
$$

Dissipated power

$$
\begin{equation*}
-\frac{\Delta_{i n t} U}{d t}=Q(p(0)-p(L))=\frac{8 L \eta}{\pi a^{4}} Q^{2} \tag{35}
\end{equation*}
$$

The point of this over simplified expression is to give a notion of scaling : how does power consumption increase with the pipeline length (lineary), or with the flow rate? How does it decrease with the pipeline radius ? These notions are required for the design of the installation : a larger pipeline will cost more to install, but less to operate.

$2.4 \quad \mathrm{CO}_{2}$ storage

In this last section, we consider two approaches for permanently storing the captured CO_{2} : either underground, or deep in the Ocean. In both cases, for simplicity, we will consider CO_{2} to be immiscible in water.

2.4.1 Geological storage

CO_{2} can be stored in a geological storage. To do so, the CO_{2} is injected in a aquifer, a permeable rock initially filled with water, covered by an impermeable layer (cap rock) which prevents CO_{2} from diffusing back to the surface. Special care has to be given not to fracture the cap rock, which can happen for pressures exceeding 200 bar.

In this section, we consider a geological storage at a depth 1500 m , with an average pressure of $p_{0}=150$ bar. We will estimate the mechanical constraints resulting from the injection of a volume $V_{\mathrm{CO}_{2}}=10^{9} \mathrm{~m}^{3}$ of CO_{2} in a closed aquifer of $V_{0}=5 \times 10^{11} \mathrm{~m}^{3}$.

1. At high pressures, water and rocks can be considered as compressible, with a compressibility defined for a pure body as:

$$
\begin{equation*}
\chi=\frac{1}{\rho} \frac{\partial \rho}{\partial p} \tag{36}
\end{equation*}
$$

where ρ is the specific mass and p the pressure. We note $\rho_{w 0}$ and $\rho_{r 0}$ the specific mass at pressure p_{0} of water and rocks respectively. Show that for pressure close to p_{0}, the specific mass changes linearly with the pressure increase.

Integrating the equation leads to :

$$
\begin{equation*}
\rho(p)=\rho_{0} e^{\chi\left(p-p_{0}\right)} \simeq \rho_{0}\left(1+\chi\left(p-p_{0}\right)\right) \tag{37}
\end{equation*}
$$

The expansion is correct for $\Delta p \ll \chi^{-1}$
2. Considering a compressibility for water of $\chi_{w}=510^{-10} \mathrm{~Pa}^{-1}$ and for rocks of $\chi_{r}=410^{-10} \mathrm{~Pa}^{-1}$, and a porosity (ie a volumic fraction of water in the aquifer) of $\phi=20 \%$, what is the average pressure reached in the geological formation once the whole volume of CO_{2} is injected? Comment this value.
Pressures should remain below 200 bar, much smaller than χ^{-1} so the previous expansion holds. Water represents a mass $m_{e}=\phi V_{0} \rho_{0}$ and occupies a volume

$$
\begin{equation*}
V_{\text {eau }}(p)=\frac{m_{\text {eau }}}{\rho_{\text {eau }}(p)} \simeq \phi V_{0}\left(1-\chi_{\text {eau }}\left(p-p_{0}\right)\right) \tag{38}
\end{equation*}
$$

idem for rocks

$$
\begin{equation*}
V_{\text {rock }}(p)=(1-\phi) V_{0}\left(1-\chi_{\text {rock }}\left(p-p_{0}\right)\right) \tag{39}
\end{equation*}
$$

leading to

$$
\begin{equation*}
\Delta V=-V_{0}\left(\phi \chi_{\text {eau }}+(1-\phi) \chi_{\text {rock }}\right) \Delta p \tag{40}
\end{equation*}
$$

To accommodate all CO2 inside the initial volume, we need $\Delta p \simeq 15$ bar.
3. We admit that the velocity field of water in a porous medium obeys Darcy's law

$$
\begin{equation*}
\mathbf{v}=-\frac{k}{\eta} \nabla p \tag{41}
\end{equation*}
$$

where $k=0.1^{-} \mathrm{m}^{2}$ is the permeability of the medium and $\eta=10^{-3} \mathrm{~Pa}$.s is the viscosity of the fluid. Adapting the continuity equation eq.(26] to the current problem and considering only small pressure variations, show that the pressure field follows the equation

$$
\begin{equation*}
\frac{\partial p}{\partial t}=\frac{k}{\bar{\chi} \mu} \Delta p \tag{42}
\end{equation*}
$$

Give the expression of the quantity $\bar{\chi}$ and comment the result.
Mass conservation : $\phi \frac{\partial \rho_{w}}{\partial t}+\operatorname{div}\left(\phi \rho_{w \mathbf{v}} \mathbf{v}\right)=0$. First order expansion : $\frac{\partial \rho}{\partial t}=\frac{\partial \rho}{\partial p} \frac{\partial p}{\partial t} \simeq \rho_{0}\left(\phi \chi_{\text {eau }}+(1-\phi) \chi_{\text {rock }}\right) \frac{\partial p}{\partial t}$ and $\operatorname{div}(\rho \mathbf{v}) \simeq \rho_{0} \operatorname{div}(\mathbf{v})=-\frac{k \rho_{0}}{\eta} \Delta p$, leading to

$$
\begin{equation*}
\frac{\partial p}{\partial t}=\frac{k}{\left(\phi \chi_{\text {eau }}+(1-\phi) \chi_{\text {rock }}\right) \mu} \Delta p \tag{43}
\end{equation*}
$$

Diffusion equation $D=\frac{k}{\bar{\chi} \eta}=0.238 \mathrm{~m}^{2} . \mathrm{s}^{-1}$
4. The injection rate in the well is adjusted such that the pressure 1 m away from the injection point is kept at 160 bar throughout the process. What is the typical time it will take for pressure to increase significantly 1 km away from the injection point ?

Order of magnitude for the diffusion of constraints : $x=\sqrt{D t}=1 \mathrm{~km} \Rightarrow t=11 j$

2.4.2 Ocean storage

Finally, we consider the possibility of storing liquid CO_{2} in the depth of the Ocean.

1. Considering the vapour pressure diagram for CO_{2} provided in appendix, estimate the depth below which CO_{2} can naturally exist as a liquid.

Temperature deep in the Ocean is $\sim 4^{\circ} \mathrm{C}$. At this temperature, the saturation pressure is about 40 bar, and CO 2 is liquid above this value. With $p(z)=p_{0}+\rho g h$, this corresponds to depth of $\sim 400 \mathrm{~m}$.
2. In reality, Ocean storage projects inject CO_{2} at depth below 3000 m . Comment this observation, based on the previous question and the documents provided in appendix.
Much deeper than previous estimation. Need to ensure mechanical stability of the storage : CO2 should sink, not float ! According to Archimedes, this require $\rho_{\mathrm{CO} 2} \geq \rho_{\text {water }}$. Estimating sea water at $\sim 1050 \mathrm{~kg} / \mathrm{m}^{3}$, this requires a pressure of 300 bar , hence the depth of 3000 m .
Note that this stability issue, and the risk of massive rejections if CO 2 is brought above the sinking threshold (due to an earthquake, for instance) have set the solution of ocean storage aside.

Appendix

- Earth radius : 6400 km
- Population in the US : 330 million
- Emission factors in kgCO_{2} per TJ : Natural Gas = 56 100, Crude Oil = 73 300, Coal = 94 600, Wood = 112000 [ref 2006 IPCC Guidelines for National Greenhouse Gas Inventories]
- Avogadro number : $\mathcal{N}=6 \times 10^{23} \mathrm{~mol}^{-1}$. Molar mass for dinitrogen $m_{\mathrm{N}_{2}}=28 \mathrm{~g} / \mathrm{mol}$, dioxygen $m_{\mathrm{O}_{2}}=$ $32 \mathrm{~g} / \mathrm{mol}$, water $m_{\mathrm{H}_{2} 0}=18 \mathrm{~g} / \mathrm{mol}$ and carbon $m_{\mathrm{C}}=12 \mathrm{~g} / \mathrm{mol}$.
- Thermodynamic quantities of CO_{2}
- Latent heat at $-20^{\circ} \mathrm{C}: 330 \mathrm{~kJ} / \mathrm{kg}$
- Heat capacity : at constant pressure $C_{p}=37.1 \mathrm{~J} / \mathrm{mol} / \mathrm{K}$, at constant volume $C_{v}=28.8 \mathrm{~J} / \mathrm{mol} / \mathrm{K}$
- Phase diagram :

- Density and vapour pressure :

- Vector analysis in cyclindrical coordinates,

$$
\begin{align*}
\operatorname{grad} f & =\frac{\partial f}{\partial r} \mathbf{e}_{\mathbf{r}}+\frac{1}{r} \frac{\partial f}{\partial \theta} \mathbf{e} \cdot \frac{\partial f}{\partial z} \mathbf{e}_{\mathbf{z}} \tag{44}\\
\operatorname{div} \mathbf{A} & =\frac{1}{r} \frac{\partial}{\partial r}\left(r A_{r}\right)+\frac{1}{r} \frac{\partial A_{\theta}}{\partial \theta}+\frac{\partial A_{z}}{\partial z} \tag{45}\\
\Delta(f(r)) & =\frac{1}{r} \frac{d}{d r}\left(r \frac{d f}{d r}\right) \tag{46}\\
\operatorname{div}(f \mathbf{A}) & =f \operatorname{div} \mathbf{A}+(\mathbf{A} \cdot g r a d) f \tag{47}\\
(\mathbf{A . g r a d}) \mathbf{B} & =\left(A_{r} \partial_{r}+\frac{A_{\theta}}{r} \partial_{\theta}+A_{z} \partial_{z}\right) \mathbf{B} \tag{48}
\end{align*}
$$

