PC 3 Carbon Capture & Storage PHY 555 – Energy & Environment Erik Johnson, Mathieu de Naurois, Daniel Suchet

(2018)

-144

3

-

226,

Volume

Journal of Environmental Management,

- Electricity production will remain massively fuelled by fossil energy
- Some industries (e.g. cement) remain large CO₂ emitters
 - ⇒ Carbon Dioxide
 Removal (CRD) or
 Capture Capture &
 Storage (CCS)
 mandatory
- See 2005 Special IPCC report

CARBON DIOXIDE CAPTURE AND STORAGE

CCS - Overview

Source: IPCC Special Report on Carbon dioxide Capture and Storage

CO₂ Capture and transportation

- Capture: essentially for large installations
 - power plans (gas, coal, IGCC)
 - CO2 neutral biofuel factories
 - chemical industry
 - steel factories
- CO₂ Transportation options
 - gas pipelines (supercritical CO₂)
 - supertanker (liquid, refrigerated CO₂)

Storage options

- geological:
 - depleted deposits (oil, gas)
 - underground cavities
 - saline aquifers
- oceanic (not considered any more):
 - dissolution in seawater
 - formation of CO₂ lakes at the bottom of the sea
- mineralization : carbonates
- valuation:
 - chemical production of methanol, urea
 - methane extraction (coal seams)
 - enhanced oil recovery
 - biomass production (algae)

Synoptic

CO₂ Capture – Overview

- post-combustion : extract CO₂ from exhaust
 - Retrofit of existing plans
 - Reduced yield (energetic cost of separation due to low concentration)
 - corrosive and / or toxic chemicals, sensitive to pollutants
- pre-combustion : gasification of coal, biomass, garbage
 - associated production of hydrogen (syngaz)
 - only for combined cycle power plants (IGCC)
 - requires air separation (ASU)
 - gas turbines need to be adapted
- oxy-combustion : burning coal in O_2 / CO_2
 - very high concentration CO2 (85-99%) in exhaust gas
 - requires air fractionation: liquefaction / "rectification", pressure-swingabsorption (PSA), membranes

Gibbs Energy

- Spontaneous evolution of a system is governed by the minimum of a state function (extensive)
 - Isolated system: S
 - Monothermal isochoric system: F = U TS
 - Monobar monothermal system: G = U + PV TS
- Role of Gibbs Energy:
 - At low temperature, G is dominated by H: a reaction takes place spontaneously if it is exothermic (H)
 - At high temperature, G is dominated by S: a reaction takes place spontaneously if it increases disorder (e.g. vaporization at T> 100° C)
 - Existence of equilibrium temperature (e.g. boiling water)

Post-combustion: physical absorption

- applied on an industrial scale
 - cleaning of natural gas or LPG
 - syngaz cleaning (chemical industry, NH₃ production)
- physical process, efficiency = f (pressure, concentration)
 - dissolution of CO₂ (or H₂S, HCN, COS, ...) at high pressure
 - low pressure gas release
- several processes on the market

Post-combustion: chemical absorption

- absorption-neutralization (scrubbing)
 - "Softening" of acid gases,
 - desulfurization
 - refining of natural gas (CH₄ / CO₂ mixture)
- chemical processes:
 - neutralization with light organic bases
 - MEA (mono-ethanolamine)
 - DEA (diethanolamine)
 - MDEA (methyldiethanolamine)
 - Absorption: 35–50 °C 5–200 bar
 - Regeneration: 115–126 °C 1–2 bar
- Alternative: Carbonate Looping (lime loop)
 - absorption (carbonation) : CaO + CO2 \rightarrow CaCO3 650–850°C
 - regeneration (calcination): CaCO3 \rightarrow CaO + CO2 900-1100°C

Typical operating ranges

Absorber : 35 to 50 °C and 5 to 205 atm of absolute pressure Regenerator : 115 to 126 °C and 1.4 to 1.7 atm of absolute pressure at tower bottom

Pre-combustion: gasification

- Goal: exhaust without CO₂
- coal gasification (19th century technology)
 - "syngaz" reaction : $C + H_2O \rightarrow CO + H_2$ $\Delta H = +131,3 \text{ kJ/mol}$

 - balance:
- Hydrogen production
 - water-gas shift-reaction: $CO + H_2O \leftrightarrow CO_2 + H_2$ $\Delta H = -41,2 \text{ kJ/mol}$
 - exhaust gas: $CO_2 + H_2 (+ N_2)$
 - CO₂ separation as in post-combustion
 - gasification + CCS as a gateway to hydrogen
- Can use a large variety of fuel: biomass, waste, ...

incomplete combustion: $C + \frac{1}{2}O_2 \rightarrow CO$ $\Delta H = -110,5 \text{ kJ/mol}$

$$4 \ C + O_2 + 2 \ H_2O \ \rightarrow \ 4 \ CO + 2 \ H_2$$

Capture & Storage : overall cost

CCS component	Cost range	
Capture from a power plant	15 - 75 US\$/tCO2 net captured	
Capture from gas processing or ammonia production	5 - 55 US\$/tCO2 net captured	
Capture from other industrial sources	25 - 115 US\$/tCO2 net captured	
Transportation	1 - 8 US\$/tCO2 transported per 250km	
Geological storage	0.5 - 8 US\$/tCO2 injected	
Ocean storage	5 - 30 US\$/tCO2 injected	

Geological storage: overview

- Use of CO₂ in enhances oil & gas recovery
- Use of CO₂ in enhance coal bed methane recovery

Deep saline formations

- avoid the gas or supercritical phase (risk of leakage) \rightarrow water dissolution
- avoid contaminating drinking water reservoirs \rightarrow use of saline aquifers (brines)
- solubility of CO2 = f (pressure) (pure water), f (salt concentration)

Geological storage potential

Candidate Gas Streams

 Table 2.1 Properties of candidate gas streams that can be inputted to a capture process (Sources: Campbell et al., 2000; Gielen and Moriguchi, 2003; Foster Wheeler, 1998; IEA GHG, 1999; IEA GHG, 2002a).

Source	CO ₂ concentration % vol (dry)	Pressure of gas stream MPa ^a	CO ₂ partial pressure MPa
CO ₂ from fuel combustion			
Power station flue gas:			
Natural gas fired boilers	7 - 10	0.1	0.007 - 0.010
Gas turbines	3 - 4	0.1	0.003 - 0.004
Oil fired boilers	11 - 13	0.1	0.011 - 0.013
Coal fired boilers	12 - 14	0.1	0.012 - 0.014
IGCC ^b : after combustion	12 - 14	0.1	0.012 - 0.014
· Oil refinery and petrochemical plant fired heaters	8	0.1	0.008
CO ₂ from chemical transformations + fuel combustion			
Blast furnace gas:			
Before combustion ^c	20	0.2 - 0.3	0.040 - 0.060
After combustion	27	0.1	0.027
Cement kiln off-gas	14 - 33	0.1	0.014 - 0.033
CO ₂ from chemical transformations before combustion			
 IGCC: synthesis gas after gasification 	8 - 20	2 - 7	0.16 - 1.4

^a 0.1 MPa = 1 bar.

^b IGCC: Integrated gasification combined cycle.

^c Blast furnace gas also contains significant amounts of carbon monoxide that could be converted to CO₂ using the so-called shift reaction.

Ocean storage: Overview

Source: IPCC Special Report on Carbon dioxide Capture and Storage

- Lake in Cameroon, 210 m deep, in a volcanic area
- 300 million m³ of liquid CO₂ at the bottom of the lake (stratified lake)
- Sudden release on August 21, 1986 following the fall of a section of cliff: "Limnic eruption"
- 1786 dead up to a distance of 30km ...
- Since then: "Nyos organs" remove CO₂ (auto-siphon), jet at 50m

Rise of CCS interest

Levelized Cost

Levelised cost of CO2 capture by sector and initial CO2 concentration, 2019

USD/tonne

IEA. All Rights Reserved

Open 🖉

Levelized Cost

Open 🖉

IEA. All Rights Reserved