PHY 555 - Energy and Environment PC1 - Orders of Magnitude Solution Strategies

Friday, 24 ${ }^{\text {th }}$ September 2021

1 - Everyday life

1. Energy expended: If we use simply black body radiation $\left(A \sigma T^{4}\right)$ for a human body, we get a far too large value. Must consider that we are receiving heat from environment. Considering that a human will be comfortable without clothing in an environment of $28^{\circ} \mathrm{C}$, the difference between received and emitted will be the energy expended (about 100W).
Typical work (steps): difference in potential energy of person at top and bottom of stairs (mgh), divided by time to climb.
Power when cycling: Power = Force x Velocity. To get force exerted by air molecules, consider their change in momentum when struck by rider (with a surface area S).

$$
\Delta p=\rho \times v \times S \times(2 \times v)=2 \rho \times v^{2} \times S
$$

We can make this slightly more exact by including lift and drag (factor of $1 / 2$), and a penetration coefficient. Using $F=\Delta p / \Delta t$, we get the formula for power, $P=\frac{1}{2} \rho v^{3} S$. The efficiency would be this value divided by the power expended (taking into account all the correct units), and is about 20%. Remaining energy must be dissipated by evaporating water. For this, we need to use the latent heat of evaporation of water $(\sim 2260 \mathrm{~kJ} / \mathrm{kg})$.
2. First estimate is that muscle power scales with mass. Horse weighs 7 times human, gives 700 W (not far from DIN horsepower of 735 W).
For car, use same calculation as for cyclist. For petrol consumption, use 1L gas $=40 \mathrm{MJ}$. This neglects efficiency of the thermal engine.
For the semi-trailer, use difference in kinetic energy $\left(1 / 2 m v^{2}\right)$ divided by time (about 1 min). Should give horsepower of 250 , which is reasonable.
For fuel consumption, note that dependence on velocity is to power of 3 .

2 - Energy Sources

1. Same calculation as for cyclist. Additional factor - cannot completely stop wind, which leads to Betz limit (coefficient of 16/27) for maximum power. Gives 4.4 MW. Current turbines are between 2 and 5 MWe peak.
2. Load factor: 24%. The installed cost of a wind turbine is around at $1.5 € / \mathrm{kWe}$. What about the entirety of French electricity production? French installed electricity production is about 65 GW .
3. Energy flow is river flow multiplied by gravitational potential energy change (don't need width for this). Payback time will give about one month.
4. Photon @ $0.5 \mu \mathrm{~m}$ will have 2.48 eV of energy. 60 photons to make one glucose ($2871 \mathrm{~kJ} / \mathrm{mol}$). Efficiency of photosynthesis $=22 \%$. Does not take into account self-use and respiration. Real yield of 1%. Calculation should reveal area $3 x$ France needed for primary energy consumption of France.

3 - Consumption

1. For consumption with growth rate, $C=C_{0} e^{\alpha t}$. Must integrate to get cumulative consumption. Match this to reserves and solve for t . Changing growth rate to 5% dramatically changes the timeline.

4 - Astrophysics

1. Use Stefan Boltzmann again and surface of sun. For power, estimate 1 eV for a single chemical reaction (so per molecule), and use volume of sun (assuming sun is mostly protons). Should give around 15000 years.
For gravitational binding energy, $\mathrm{d} U=\frac{-G m(r) \times 4 \pi r^{2} \rho}{r} \mathrm{~d} r$ with $m(r)=\frac{4}{3} \pi \rho r^{3}$
And integrate. Assume that light emission P compensates for the change in this binding energy.

$$
P=\frac{\mathrm{d} U}{\mathrm{~d} t}=\frac{\mathrm{d} U}{\mathrm{~d} R} \times \frac{\mathrm{d} R}{\mathrm{~d} t}=-\frac{U}{R} \times \frac{\mathrm{d} R}{\mathrm{~d} t} \Rightarrow \frac{1}{R} \times \frac{\mathrm{d} R}{\mathrm{~d} t}=\frac{P}{U}
$$

Gives a lifetime of about 20 million years. To get real lifetime of 10 billion, magnitude of energy involved per reaction needs to be $\sim 1 \mathrm{MeV}$.

