Circuit electricity

Low frequency limit

AC circuits and impedances, RLC circuit and resonance, AC power, passive linear filters and Bode plots

Feynman Vol. II Chapter 22

Reminder from last lecture

Kirchhoff's laws:

$$\sum_{k} I_{k} = 0$$
for any node

Electrical power: P = UI

Electrostatic

 $I = C \frac{dU}{dt}$ I-U relation

Drude model: friction term due to collisions, leads to Ohm's law:

$$ec{j} = \overset{ ext{conductivity}}{\sigma E}$$

$$U = RI$$

Ohm's law

$$P=RI^2$$
 Joule heating

 $W_E = \frac{1}{2}CU^2$

capacitor energy (electric)

EM induction

$$U=L\frac{dI}{dt}$$

$$W_B = \frac{1}{2}LI^2$$

coil energy (magnetic)

Transient regime = problems involving ordinary differential equations:

1. AC circuits and impedances

Alternating current - AC:

Most electrical generators produce sinusoidal signals (AC). Today's generation, transmission and distribution of electrical energy is AC. AC signals are therefore of considerable practical importance.

AC signal:
$$f(t) = A\cos\omega t + B\sin\omega t = f_{\rm max}\cos(\omega t + \phi)$$
 (can be voltage, current, emf, E-field ...)

Complex notation:
$$\underline{f}(t) = \underline{f}_0 e^{j\omega t} \qquad \text{in electricity, the imaginary unit number is noted 'j' instead of 'i' to avoid confusion with the current with
$$\underline{f}_0 = f_{\max} \, e^{j\phi}$$$$

Relation between real and complex signals: $f(t) = \operatorname{Re} f(t)$

Alternating current - AC:

AC signals are also important because any periodic signal with period T can be written as a discrete sum of AC signals through the Fourier series:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} (a_n \cos \omega_n t + b_n \sin \omega_n t) \qquad \text{with} \qquad \omega_n = 2n\pi/T$$
$$= \sum_{n=-\infty}^{+\infty} c_n e^{j\omega_n t}$$

Any signal can be written as a continuous sum of AC signals through the Fourier transform:

$$f(t) = \int_{-\infty}^{+\infty} d\omega \ c(\omega) e^{j\omega t}$$

1. AC circuits and impedances

Alternating current - AC:

If a generator in the circuit is suddenly turned on and produces a sinusoidal voltage source, a permanent forced sinusoidal regime will be reached after a transient period. In this forced sinusoidal regime, all voltages and currents in the circuit are sinusoidal with the same frequency as the generator:

$$\underline{U}(t) = \underline{U}_0 \, e^{j \underline{\omega} t} \, _{\text{the generator}}$$

$$\underline{I}(t) = \underline{I}_0 \, e^{j \omega t}$$

for any voltage or current in the circuit

Impedances:

For a passive element, we define the impedance as the complex coefficient of proportionality between current and voltage:

1. AC circuits and impedances

Impedances:

Impedances:

$$rac{d}{dt}=j\omega$$
 for AC signals

$$\begin{split} I &= C \frac{dU}{dt} \implies \underline{I} = C \frac{d\underline{U}}{dt} = jC\omega\underline{U} \\ &\stackrel{\text{current-voltage}}{\Longrightarrow} \underline{U} = \frac{1}{jC\omega}\underline{I} \end{split}$$

$$\Longrightarrow \left| Z = \frac{1}{jC\omega} \right|$$

for the capacitor

1. AC circuits and impedances

Impedances:

$$rac{d}{dt}=j\omega$$
 for AC signals

$$U = L\frac{dI}{dt} \implies \underline{U} = L\frac{d\underline{I}}{dt} = jL\omega\underline{I}$$

current-voltage relation for coil

$$\Longrightarrow Z = jL\omega$$

for the coil

Impedance terminology:

$$Z = R + jX$$

R = Re(Z) is the resistance in Ohms

Z is complex and in Ohms

11 = 110(2) 10 1110 10010141100 111 0111110

$$X = Im(Z)$$
 is the reactance in Ohms

$$Y = 1/Z$$

 $Z = |Z|e^{j\arg Z}$

Y is the admittance in Siemens

$$|Z| = \left| \frac{U_{\text{max}} e^{j\phi_u}}{I_{\text{max}} e^{j\phi_i}} \right| = \frac{U_{\text{max}}}{I_{\text{max}}}$$

ratio of voltage amplitude to current amplitude

$$\arg Z = \phi_u - \phi_i$$

phase shift between voltage and current oscillations

1. AC circuits and impedances

Kirchhoffs's laws: apply to complex currents and voltages

impedances add in series:

$$\underline{\underline{U}} = \underline{\underline{U}}_1 + \underline{\underline{U}}_2 = Z_1\underline{\underline{I}} + Z_2\underline{\underline{I}} = Z\underline{\underline{I}}$$
 with
$$\underline{Z} = Z_1 + Z_2$$

voltage divider:
$$\underline{U}_1=Z_1\underline{I}=rac{Z_1}{Z_1+Z_2}\underline{U}$$
 $\underline{U}_2=rac{Z_2}{Z_1+Z_2}\underline{U}$

admittances add in parallel:

$$\underline{I} = \underline{I}_1 + \underline{I}_2 = \frac{1}{Z_1}\underline{U} + \frac{1}{Z_2}\underline{U} = \frac{1}{Z}\underline{U}$$
 with
$$\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2}$$
 or
$$Y = Y_1 + Y_2$$

current divider:

$$\underline{I}_1 = Y_1 \underline{U} = \frac{Y_1}{Y_1 + Y_2} \underline{I}$$

$$\underline{I}_2 = \frac{Y_2}{Y_1 + Y_2} \underline{I}$$

RLC circuit in series and resonance

2. RLC circuit and resonance

equations:

$$\underline{U}_{R} = R\underline{I}$$

$$\underline{U}_L = jL\omega\underline{I}$$

$$\underline{U}_C = \frac{1}{jC\omega}\underline{I}$$

$$\underline{U}_R + \underline{U}_L + \underline{U}_C = \underline{E} \qquad \Longrightarrow \\ \left(R + jL\omega + \frac{1}{jC\omega} \right)\underline{I} = \underline{E}$$
 Kirchhoff's voltage law

2. RLC circuit and resonance

$$\underline{E} = Z\underline{I} \implies \underline{I}(t) = \frac{E_{\text{max}}}{\left(R + jL\omega + \frac{1}{jC\omega}\right)} e^{j\omega t}$$

2. RLC circuit and resonance

$$\underline{I}(t) = \frac{E_{\text{max}}}{\left(R + jL\omega + \frac{1}{jC\omega}\right)} e^{j\omega t}$$

$$\underline{I}(t) = I_{\text{max}} e^{j(\omega t + \phi_i)} \implies \begin{bmatrix} I_{\text{max}} = \frac{E_{\text{max}}}{\left[R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2\right]^{1/2}} \\ \phi_i = -\arg\left[R + j\left(L\omega - \frac{1}{C\omega}\right)\right] \end{bmatrix}$$

$$I_{
m max}=f(\omega)$$
 this function is maximum for ω = ω_0 with: $L\omega_0-rac{1}{C\omega_0}=0$

$$\Longrightarrow$$
 $\omega_0=1/\sqrt{LC}$ and $I_{\mathrm{max}}(\omega_0)=rac{E_{\mathrm{max}}}{R}$

resonance frequency

2. RLC circuit and resonance

$$I_{\text{max}} = f(\omega) = \frac{E_{\text{max}}}{\left[R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2\right]^{1/2}}$$

at low frequencies:

$$\omega \longrightarrow 0$$

$$f(\omega) \sim C\omega E_{\rm max}$$

at high frequencies:

$$\omega \longrightarrow +\infty$$

$$f(\omega) \sim \frac{E_{\rm max}}{L\omega}$$

resonance frequency:

$$\omega = \omega_0$$

$$f(\omega_0) = E_{\text{max}}/R$$

Power in AC circuits

3. Power in AC circuits

Average power P received by an electrical component in AC:

$$P = \langle P(t) \rangle = \langle U(t)I(t) \rangle = \langle U_{\text{max}} \cos(\omega t + \phi_u) I_{\text{max}} \cos(\omega t + \phi_i) \rangle$$

$$= \frac{1}{2} U_{\text{max}} I_{\text{max}} \langle \cos(2\omega t + \phi_u + \phi_i) + \cos(\phi_u - \phi_i) \rangle$$

$$= \frac{1}{2} U_{\text{max}} I_{\text{max}} \cos(\phi_u - \phi_i)$$

For better comparison between AC and DC, we can use effective values for voltage and current:

$$U_{\rm eff} = \sqrt{\langle U(t)^2 \rangle} = \frac{U_{\rm max}}{\sqrt{2}}$$
 $I_{\rm eff} = \sqrt{\langle I(t)^2 \rangle} = \frac{I_{\rm max}}{\sqrt{2}}$

$$\Longrightarrow P = U_{\text{eff}} I_{\text{eff}} \cos(\phi_u - \phi_i)$$

depends on phase shift between voltage and current

3. Power in AC circuits

$$P = U_{\rm eff} I_{\rm eff} \cos(\phi_u - \phi_i)$$
 term called power factor

For the three passive elements:

resistance:
$$Z=R \implies \phi_u=\phi_i \implies P=U_{\rm eff}I_{\rm eff}$$

respiration of the coil:
$$Z = jL\omega \implies \phi_u = \phi_i + \pi/2 \implies P = 0$$

• capacitor:
$$Z=1/jC\omega \implies \phi_u=\phi_i-\pi/2 \implies P=0$$

Electrical energy distribution: needs end-user load power factor close to 1 to avoid using large apparent currents with associated Joule heating / energy loss in the transmission lines.

Filters and Bode plots

4. Filters and Bode plots

Electronic filter:

- perform signal processing by removing unwanted frequencies in the signal and/or modifying its phase
- can be passive and linear if using only resistances, inductances and capacitors
- can be represented as a quadrupole electrical element (4 terminals):

4. Filters and Bode plots

Electronic filter:

• filter fully characterised by its transfer function H:

$$H(\omega) = \frac{\underline{U}_{\rm out}}{\underline{U}_{\rm in}} = G(\omega) e^{j\theta(\omega)}$$
 phase shift (between output and input)

- gain in decibel: $G_{\mathrm{dB}}(\omega) = 20 \, \log_{10} G(\omega)$
- the graphical representations of the gain in dB and phase shift in log scale are called the Bode plots:

4. Filters and Bode plots

Example: low-pass RC filter

Use voltage divider formula:

$$\underline{U}_{\rm out} = \frac{Z_C}{Z_C + Z_R} \underline{U}_{\rm in}$$

$$\implies \underline{U}_{\text{out}} = \frac{1/(jC\omega)}{1/(jC\omega) + R} \underline{U}_{\text{in}} = \frac{1}{1 + jRC\omega} \underline{U}_{\text{in}}$$

Transfer function of the low-pass RC filter:

$$H(\omega) = \frac{\underline{U}_{\text{out}}}{\underline{U}_{\text{in}}} = \frac{1}{1 + jRC\omega}$$

4. Filters and Bode plots

$$H(\omega) = \frac{1}{1 + jRC\omega}$$

at low frequencies:

$$\omega \ll 1/(RC)$$
 $H(\omega) \simeq 1$ $G_{\mathrm{dB}} \simeq 0$ $\theta \simeq 0$

$$\omega \ll 1/(RC)$$
 $H(\omega) \simeq 1$ $\omega \gg 1/(RC)$ $H(\omega) \simeq -j/(RC\omega)$ $G_{\rm dB} \simeq 0$ $\theta \simeq 0$ $G_{\rm dB}(\omega) \simeq 20 \left[\log_{10}(1/RC) \quad \theta \simeq -\pi/2 - \log_{10}(\omega) \right]$

4. Filters and Bode plots

- This low-pass RC filter is said to be a first order filter. The order of the filter refers to the order of the polynomial in the denominator of the transfer function.
- Higher-order filters: decrease faster away from cutoff frequency, therefore more efficient at filtering signals.

Summary

Complex notation for AC signals:

Impedance:

Y = 1/ZAdmittance:

Kirchhoff's laws apply for complex voltage and current. Impedances add in series, admittances add in parallel:

Forced RLC circuit: resonance when it is excited at the natural oscillation frequency of the circuit.

in series

Average electrical power in AC:

$$P = U_{
m eff} I_{
m eff} \cos(\phi_u - \phi_i)$$
 with $U_{
m eff} = U_{
m max}/\sqrt{2}$ $I_{
m eff} = I_{
m max}/\sqrt{2}$

Filters:

Bode plots

for filters:
$$G_{
m dB} = 20\,\log_{10}G$$

Reminder

- ► End of the lectures, no lecture next week on June 21
- ► Next week (June 21): only revision in tutorial sessions, bring previous tutorial sheets
- What to expect for final exam on June 28? Electromagnetic induction, EM waves, geometrical optics and circuit electricity.

