Circuit electricity
Low frequency limit

Drude model and Ohm'’s law, Kirchhoff’s laws,
capacitor and RC circuit, coil and RL/LC circuits,
transient regime

Reminder from previous lecture
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Approximation used in circuit electricity

Circuit electricity:

>

E-field, voltage and B-field from charge and current (electrostatic
and EM induction)

Neglect propagation time curl g — MO}"‘ L4

Maxwell-Ampere equation
For a circuit of typical dimension L, the propagation time is:
At =L/c
For a signal varying over a typical time scale T, we can neglect

this time retardation for: T >> L/C

For a sinusoidal signal of frequency w and wavelength A=2mc/w,

the condition reads: )\
> L

typical dimension

wavelength of circuit

Consequence: current and voltage depend on time but not on space

Approximation used in circuit electricity
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Drude model, Ohm’s law and
resistance

1. Drude model and Ohm’s law

Electron motion in a conductor:

A free electron in a conductor is constantly colliding with the nuclei of the
crystal lattice and with other electrons. After each collision, the electron
has a new direction, completely random.
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Drude model for metal conductivity:

Collision is modelled by a friction term in the electron equation of motion:

d(v) (V)
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dt T relaxation time, mean time
between 2 successive collisions




1. Drude model and Ohm’s law

Solution of the Drude equation:
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1. Drude model and Ohm’s law

Ohm’s law
macroscopic version
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Resistance and macroscopic Ohm’s law:
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Electrical power and Kirchhoff’s laws

2. Electrical power and Kirchhoff’s laws

Electrical power in a component:
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Energy of free charge at terminal A: qVA o A 5
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Power entering at terminal A: ~— — —e
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Energy of free charge at terminal B: qVB DNV t,v\/tﬂy\
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Power exiting terminal B: E QVB — IVB

Electrical power going to the component AB (receptor):

P=1Vy—IVg = |P=UI




2. Electrical power and Kirchhoff’s laws

Joule heating:

For a resistance, the poweris: P = U] = RI?

This energy is dissipated in the form of heat in the conductor due to the collisions
with the crystal lattice (friction term in Drude model).

Generator convention:
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Electrical power produced by 7
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2. Electrical power and Kirchhoff’s laws

First Kirchhoff’s law: wﬁwm HeN
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Charge conservation:
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Stationary condition (no charge
build up in the node):

L+ +13+1,=0

of the currents arriving at the node is zero:

N
For a node joining N conductors, the sum _
g » I, =0
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Kirchhoff’s current law




2. Electrical power and Kirchhoff’s laws

Second Kirchhoff’s law:

In the absence of electromagnetic induction curl E = 6 differential form
(no varying B-field), Maxwell-Faraday equation
reads: 7{E -dl =0 local form

conservative electric field

For any loop in an electrical circuit,
the sum of the voltages across all
components along the loop is zero:
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Kirchhoff’s voltage law

2. Electrical power and Kirchhoff’s laws

Resistances in series and in parallel:

7?.4 RZ—
WV AANN — R=R;+ Ry

series

Ra
— NV

L A R™R R
Ro

parallel




Capacitor and RC circuit

3. Capacitor and RC circuit

Resistance: first passive element

Second passive element: capacitor = 2 parallel plates with opposite charge
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Assuming wires have negligible resistance, the voltage U writes:
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3. Capacitor and RC circuit
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Current-voltage relation for the capacitor:

If there is a current, the charge Q
is varying (charge conservation):

aQ _

=1
dt

dU
I =0 —
dt

Energy WE stored in the capacitor (electric field energy):

W= LalBzsa= 205 = |, = Loge| e
2 2d E — 2 energy
Consistent with electrical power: dﬁ =CU d—U =UIlI=P
dt dt
3. Capacitor and RC circuit
134
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RC circuit in series N

E

Initially U=0, and at t=0 the switch is closed.

E=U-+RI
Kirchhoff’s voltage law
r—c%

dt

capacitor |-U relation

dU U E

i T RC T RC




3. Capacitor and RC circuit
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dt = RC  RC
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| . The capacitor is charging to E
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3. Capacitor and RC circuit

U(t) = E [1 — exp (—%)]




3. Capacitor and RC circuit

At t =T, the capacitor is charged to E. We open the switch and
remove the generator:
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Immediately after, the
— C U(T) = E switch is closed
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: The capacitor is discharging from E
to 0 with a characteristic time RC




Coil and RL/LC circuits

4. Coil and RL/LC circuits

Third passive element: coil = winding with many turns of wire
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A Electromagnetic induction

The current flowing through the coil generates a
solenoid-type magnetic field inside the coil:

g 9= // B d§ = I e

The emf writes:

MV

inductance
(depends on the geometry of the coil)
do g dl
= - = — L e
dt dt

Assuming the magnetic field is negligible outside the coil, and neglecting wire
resistance, the emf is the voltage difference between the terminals (with the same
orientation as the emf). With receptor convention, U has opposite orientation:

I
U= —c—-1%
T




4. Coil and RL/LC circuits

Third passive element: coil = winding with many turns of wire
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Current-voltage relation for the coil:
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Energy Wg stored in the coil (magnetic field energy):
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4. Coil and RL/LC circuits
R
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O L

Initially 1=0, and at t=0 the switch is closed.

E=U-+RI
Kirchhoff’s voltage law d[ RI E
dl 3 @ T T
U=L—
dt

coil I-U relation




4. Coil and RL/LC circuits
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4. Coil and RL/LC circuits
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4. Coil and RL/LC circuits

< N\ _
Ly LC circuit
C’ N U L‘ The capacitor is initially charged to
U=E. At t=0 the switch is closed.
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capacitor I-U relation U=-LC dt2 f dtQ + LC =0
U=_U; = —Lﬁ —> U(t) = Acos(wt) + Bsin(wt)
dt
coil I-U relation with w=1/VvLC
4. Coil and RL/LC circuits
1' J 2\ U(t) = Acos(wt) + Bsin(wt)
C UO)=EFE —= A=F
I(0)=0 = B=0
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Kirchhoff’s laws: ; k k

for any node
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Drude model: friction term due to Electrostatic

collisions, leads to Ohm’s law: dU
conductivity | = C
- v = dt
j=0 E U=RI I-U relation
Ohm’s law Ohm'’s law 1
microscopic version macroscopic version - 2
: Wp = 5 CU
P=RI
capacitor energy (electric)

Joule heating
Ut
)

P=UI

Electrical power:
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EM induction

dI
U=L—
dt

I-U relation
1
Wp = §Lﬂ
coil energy (magnetic)
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establishing current

Transient regime = problems involving !
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ordinary differential equations: /" charging capacitor
, in RC circuit in RL circuit
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