Geometrical optics

Short wavelength limit

Wavefronts and rays, laws of geometrical optics, optical systems and image formation, flat mirrors and dielectric interfaces

Reminder from last lecture

Perfect conductor approximation: $\vec{E}=\vec{0}$ \longrightarrow EM waves are reflected by perfect conductors

Dielectrics: $\epsilon_0 \longrightarrow \epsilon = \epsilon_r \epsilon_0$ Refraction index: $n = c/v = \sqrt{\epsilon_r}$

 $\vec{\Delta}\vec{E} - \frac{n^2}{c^2}\,\frac{\partial^2\vec{E}}{\partial t^2} = \vec{0} \qquad k = nk_0 \qquad \lambda = \lambda_0/n \qquad \lambda_0 = \frac{2\pi c}{\omega}$ wavenumber wavelength vacuum wavelength

Wave equation (dielectric of index *n*)

Polarizer: transmits a specific polarization

Waveplate: two main axis with different refraction indices

Half-wave plate: polarization transformed into its symmetric w.r.t waveplate axis

Quarter-wave plate: linear polarization can become circular and vice versa

Full set of Maxwell's equation: fields need to propagate at speed of light (nothing instantaneous), accelerating charge and oscillating currents are source of EM waves

1. Wavefronts and rays

Monochromatic EM wave:

$$\vec{E}(\vec{r},t) = \vec{E}_0(\vec{r})e^{i(\phi(\vec{r})-\omega t)}$$
 sinusoidal time dependence exp(-i ω t) slowly in space

Wave corresponding to a single frequency ω , a single color, but more general (arbitrary dependence on position) than the sinusoidal plane wave.

Sinusoidal plane waves: $\ \underline{\vec{E}}_0(\vec{r}) = \underline{\vec{E}}_0; \quad \phi(\vec{r}) = \vec{k} \cdot \vec{r}$

Wavefronts = equiphase surfaces (also called phase fronts) :

$$\phi(\vec{r}) = \text{const}$$

Monochromatic EM wave:

$$\underline{\vec{E}}(\vec{r},t) = \underline{\vec{E}}_0(\vec{r})e^{i(\phi(\vec{r})-\omega t)}$$

$$\underbrace{\vec{E}}_{\text{amplitude, varies}} e^{i(\phi(\vec{r})-\omega t)}$$

$$\underbrace{\vec{E}}_{\text{sinusoidal time dependence exp(-i\omega t)}}$$

phase, varies

sinusoidal plane wave

monochromatic wave

$$\phi(\vec{r}) = \text{const } (\text{mod } 2\pi)$$

phase, varies

1. Wavefronts and rays

Monochromatic EM wave:

Short wavelength limit:

space derivatives of the amplitude $E_0(r)$

 \ll

space derivatives of the phase $\phi(r)$

In other words:

geometrical optics approximation

typical distances in the optical system (extent of the wave, aperture size, etc.)

wavelength λ

Monochromatic EM wave:

$$\underline{\vec{E}}(\vec{r},t) = \underline{\vec{E}}_0(\vec{r})e^{i(\phi(\vec{r})-\omega t)}$$

$$\underbrace{\vec{E}}_{\text{sinusoidal time dependence exp(-i}\omega t)}^{\text{guickly in space}}$$

phase, varies

Injecting monochromatic EM wave in Maxwell's equations and using the short wavelength limit lead to:

sinusoidal plane wave wavenumber k

$$ec{E} \perp ec{k}$$
 $ec{B} \perp ec{k}$

$$ec{B} \perp ec{k}$$

$$\underline{\vec{B}} = \frac{\vec{k} \times \underline{\vec{E}}}{\omega} \quad \ \|\vec{k}\| = n\omega/c$$

k is a constant (independent of r) defining the sinusoidal plane wave monochromatic wave phase $\phi(r)$

$$\underline{\vec{E}} \perp \vec{\nabla} \phi \qquad \qquad \underline{\vec{B}} \perp \vec{\nabla} \phi$$

$$\vec{B} \perp \vec{\nabla} \phi$$

$$\underline{\vec{B}} = \frac{\vec{\nabla}\phi \times \underline{\vec{E}}}{\omega} \qquad \|\vec{\nabla}\phi\| = n\omega/c$$

$$\|\vec{\nabla}\phi\| = n\omega/c$$

these equations are local (depend on r)

can define local wavenumber: $\vec{k}_{local}(\vec{r}) = \nabla \phi(\vec{r})$

1. Wavefronts and rays

Monochromatic EM wave:

$$\underline{\vec{E}}(\vec{r},t) = \underline{\vec{E}}_0(\vec{r})e^{i(\phi(\vec{r})-\omega t)}$$
 sinusoidal time dependence exp(-i ω t)

phase, varies

Flow of EM energy defined by Poynting vector:

sinusoidal plane wave wavenumber k

$$\langle \vec{\Pi} \rangle = \left\langle \frac{\vec{E} \times \vec{B}}{\mu_0} \right\rangle$$
$$= \frac{1}{2\mu_0 \omega} E_0^2 \vec{k}$$

monochromatic wave phase $\phi(r)$

$$\langle \vec{\Pi} \rangle = \frac{1}{2\mu_0 \omega} E_0(\vec{r})^2 \, \vec{\nabla} \phi$$
$$= \frac{1}{2\mu_0 \omega} E_0(\vec{r})^2 \, \vec{k}_{local}(\vec{r})$$

EM energy propagates in the direction of local wavenumber

$$\vec{k}_{\text{local}}(\vec{r}) = \vec{\nabla}\phi(\vec{r})$$

Definition of optical rays:

Optical rays are the field lines of the Poynting vector $\langle \vec{\Pi} \rangle$ in the short wavelength limit (geometrical optics approximation).

Or equivalently:

 Optical rays are also the field lines of the local wavenumber

$$\vec{k}_{\text{local}}(\vec{r}) = \vec{\nabla}\phi(\vec{r})$$

 Optical rays are always perpendicular to wavefronts

1. Wavefronts and rays

Ray equation

Using the two following relations:

$$\vec{k}_{\text{local}}(\vec{r}) = \vec{\nabla}\phi(\vec{r})$$
$$\|\vec{k}_{\text{local}}\| = \|\vec{\nabla}\phi\| = n\omega/c$$

One can show the ray equation:

$$\frac{d\vec{k}_{\text{local}}}{ds} = \frac{\omega}{c} \, \vec{\nabla} n$$

s being the curvilinear axis along the optical ray

Consequence in homogeneous medium with constant refraction index n:

$$ec{k}_{
m local} = {
m const}$$
 \iff optical rays are straight lines in homogeneous media

Other consequence: a gradient of refraction index n bends optical rays

mirage (see tutorial #12)

Optical rays give a simplified and approximate description of light

Optical rays cannot describe:

- ► Interference (sum of waves), see homework #4
- Diffraction
- Polarization (light is a vector field)

Laws of geometrical optics

2. Laws of geometrical optics

Fermat's principle of least time

To go from a point *A* to a point *B*, light takes the path that requires the shortest time.

ground

2. Laws of geometrical optics

<u>Snell-Descartes laws</u> (see homework #4)

Law of reflection:

- The incident ray, the normal to the reflection surface and the reflected ray lie in the same plane
- $\theta_r = -\theta_i$

2. Laws of geometrical optics

Snell-Descartes laws

(see homework #4)

Law of refraction:

- The incident ray, the normal to the surface and the refracted ray lie in the same plane
- $n_1 \sin \theta_1 = n_2 \sin \theta_2$

2. Laws of geometrical optics

Snell-Descartes laws

Total internal reflection:

• When $n_1>n_2$:

$$\sin \theta_2 = \frac{n_1}{n_2} \sin \theta_1 > \sin \theta_1$$

$$\quad \text{ If } \frac{n_1}{n_2} \sin \theta_1 > 1 : \\$$

there is total internal reflection. All light energy is reflected and there is no refracted ray.

This defines a critical angle θ_{1c} above which there is total internal reflection:

$$\theta_{1c} = \sin^{-1}\left(\frac{n_2}{n_1}\right)$$

2. Laws of geometrical optics $\frac{\text{Snell-Descartes laws}}{\text{Nonceasing } n}$ Medium with variable refraction index: $n\sin\theta = \text{const}$

Optical systems and image formation

3. Optical systems and image formation

Optical system: set of refractive and/or reflective surfaces allowing indirect observation of an object by forming an image.

Object: rays from points of the object (for example A) are incident in the optical system

Image: after going through the optical system, rays emerge and intersect at the image points of the object (A' image of A for example)

$$A \xrightarrow[system]{optical} A'$$

3. Optical systems and image formation

Example: cameras contain lenses (optical system) which take the object (the scenery, at some distance) and form an image on the camera sensor.

Magnification: ratio between image size and object size (if negative, image is flipped):

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}}$$

with:
$$A \longrightarrow A'$$
 $B \longrightarrow B'$

3. Optical systems and image formation

Image-formation property of the optical system:

Perfect stigmatism

optical system Optical system A Optical system

Approximate stigmatism

(due to aberrations of the optical system)

3. Optical systems and image formation

Real vs virtual object and image

Real object and real image

Case of virtual object

Case of virtual image

3. Optical systems and image formation

Real vs virtual image (or object)

3. Optical systems and image formation

Case of object and image at infinity:

When the object is located at a large distance from the optical system, the rays from a point A are almost parallel to each other.

A'B' viewed

under angle α '

When the distance goes to infinity, the rays are parallels and points A and B are characterized by the angle of their rays: $AB \text{ is viewed under angle } \alpha$ $AB \text{ is viewed under angle } \alpha$

Angular magnification:
$$\gamma = \frac{\alpha'}{\alpha}$$

Flat mirrors and dielectrics interfaces

4. Flat mirrors and dielectric interfaces

Flat mirror

- The flat mirror has perfect stigmatism. The image is virtual and is the symmetric of the object with respect to the mirror plane
- Magnification is 1, the flat mirror preserves object size.
- Does not preserve parity: left-right inversion.

4. Flat mirrors and dielectric interfaces

Flat interface between dielectrics

 A flat interface between two dielectrics of refraction indices n₁ and n_2 has approximate stigmatism.

- $HA' \simeq \frac{n_2}{n_1} HA$
- Magnification is 1, object size is preserved for an extended object parallel to the interface.
- Preserve parity: no inversion.

Summary

 $\underline{\vec{E}}(\vec{r},t) = \underline{\vec{E}}_0(\vec{r})e^{i(\phi(\vec{r})-\omega t)}$

single color

Wavefronts (or phase fronts) = equiphase surfaces:

$$\phi(\vec{r}) = \text{const}$$

Short wavelength limit = geometrical optics approximation:

$$L \gg \lambda$$
 typical dimension wavelength of system

Monochromatic EM wave:

Local wavenumber:
$$ec{k}_{
m local}(ec{r}) = ec{
abla}\phi(ec{r}) \quad \|ec{k}_{
m local}\| = n\omega/c$$

EM energy propagates in the direction of local wavenumber

Optical rays = field lines of Poynting vector / local wavenumber

rays perpendicular to wavefronts

Fermat's principle: light takes path requiring the least time.

Snell-Descartes law:

$$\theta_r = -\theta_i$$

$$\theta_r = -\theta_i$$
 $n_1 \sin \theta_1 = n_2 \sin \theta_2$

reflection

refraction

Image formation:

$$A \longrightarrow A'$$

Flat mirror: $A' = \operatorname{sym}_{\Pi} A$

Dielectric interface: $HA' \simeq \frac{n_2}{n_1} HA$