Electromagnetic waves and light

Perfect conductors and dielectrics, polarizers
and waveplates, accelerating charge and
antenna as source of electromagnetic waves

Reminder from last lecture

Electromagnetic waves in 3D:

_ _ . _ 3D d’Alembert wave equation
AE Ho€o Ot2 =0 AB Ho€0 Ot2 _ for E and B fields in vacuum
Sinusoidal plane waves:
— = — . _" = — ﬁ >< E_” o N — —
E(rt) = EOGl(k r-wt) B = — (k} =kn, F, B) is a direct trihedron
C

Light wave polarization: can be linear, circular or elliptical
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2 2110 116 power per unit surface

electromagnetic energy density Poynting vector




Perfect conductors and dielectrics

1. Perfect conductors and dielectrics

Reminder from electrostatics

Conductors at equilibrium:

FE = (0 inside the conductor

Insulators, modeled as dielectrics:

vacuum permittivity dielectric permittivity
(er is called the relative permittivity)




1. Perfect conductors and dielectrics

For electromagnetic waves

Conductors: more complicated

» Because the electric field oscillates in time, there may
not be enough time for electrons to shield the field "N\ —>
EM
> In fact, the fields of the EM waves can penetrate over a typical AV
distance ¢ called the skin depth, after which the fields decay
exponentially in the metal
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> If the wavelength 1 of the EM wave is large compared to the skin depth, A >> 0, then we can
consider the so-called « perfect conductor » limit for which:

— —

E=0 inside a perfect conductor

» The perfect conductor approximation is reasonable for wavelengths in the visible range and
higher, but incorrect for X rays and gamma rays (which can propagate through a metal).

1. Perfect conductors and dielectrics

For electromagnetic waves

Conductors:

» Let’s consider a plane wave (only depends on x)

polarized along y: NS\ —>
%
E,(x,t) = f(z —ct) + g(z + ct) e
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incident EM wave
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» Metal starts at x=0 and imposes E,=0, equivalent to Analogy with the string (Lecture 9):
fixed end for the string: one fixed end implies reflection
E, 0,t) =0 = g(s) =—f(—s) Vs

fixed end T

reflected EM wave

Electromagnetic waves are reflected by perfect conductors.

Principle of metallic mirrors.




1. Perfect conductors and dielectrics

For electromagnetic waves

E,(x,t)

Light reflection on a
metallic mirror
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1. Perfect conductors and dielectrics

For electromagnetic waves

Dielectrics:

» Similarly to electrostatics, one can describe the propagation of electromagnetic
waves by considering a permittivity different from the vacuum permittivity:

vacuum permittivity dielectric permittivity
(er is called the relative permittivity)

l Dielectric permittivity depends on the wavelength of the EM wave, and
does not have the same value than the electrostatic permittivity

N 825 — - = 2 — Modeling of dielectrics: beyond
AFE — ,LL ; 0 — AE — HgE 012 =0 the scope of the course and

not required for exams

3D d’Alembert equation 3D d’Alembert equation
for EM waves in vacuum for EM waves in dielectrics




1. Perfect conductors and dielectrics

Dielectrics:

2—»

— =

E — pge 52 =0 — the speed of light in a dielectric is now:
1 c

1
VH0E e/t \/er

3D d’Alembert equation
for EM waves in dielectrics

1
— = HoE = U=
v

Definition of the index of refraction for a dielectric:

where v is the speed of the EM wave in
— d’Alembert equation (or the phase velocity
(¥ v=w/k in a more general case)

—> | n =/ = \€/€o

With the refraction index, 3D d’Alembert equation writes: A - = 0

1. Perfect conductors and dielectrics

Dielectrics:

Sinusoidal plane wave in dielectrics: E(f" t) = EO ez(k-r—wt)

= 2
2 a2
- = n 8 ) — n
C 3t C2
—  k=nw/c
2T
In vacuum: )\0 =l = — ko = W/C
w
2TV A
In a dielectric: X =vT = _ 20 k = nw/c = nko
w n
. f
EM wave propagating . same frequency @ see
in different media —>  put different wavenumber k=nko homework #4

different wavelength A=10/n




Polarizers and waveplates

2. Polarizers and waveplates

Reminder on polarization: E(f” t)y=FE ik T—wt)

—

E, — FEie'™ €y E = FEycos(k -7 —wt+ ¢1) €
horizontal linear polarization

b, = Foe'2 €, E = FEscos(k -7 — wt + ¢2) €,
vertical linear polarization

General case: [y, = Elewl €y + E2€i¢2 e,

Polarizers and waveplates: optical components that manipulates the polarization
of EM waves.

» Polarizers: transmit a specific polarization. Can be used to produce light
of well-defined polarization.

» Waveplates: modify phase difference ¢2-¢1. Can rotate linear polarization
or transform linear into circular polarization, and vice versa.




2. Polarizers and waveplates

Example - horizontal polarizer: fully transmits the horizontal polarization (along y)
and absorbs the vertical polarization (along z)
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E,=FEe'" &, + Eye'?? &, —p Ey, = E1e' ¢,
horizontal

general case horizontal linear polarization

polarizer

2. Polarizers and waveplates

Principle of waveplates: made of a birefringent material (for example crystal
quartz) that has different refraction indices for different polarizations.

Waveplates have two main axis perpendicular to each other:

» Fast (f) axis (for example along y): lower refraction index ny, higher speed vy

» Slow (s) axis (for example along z): higher refraction index ns, lower speed vs

/ ng<ns and Vf > Vs

; horizontal polarization propagates faster

than vertical polarization in the waveplate
AA\:& ﬁoo.l-a




2. Polarizers and waveplates

How to determine the form of the wave after a waveplate of thickness e?

1) Reasoning with the propagation speed
E,(z,t) = Eye'?te!For=et)
» Before waveplate (x<0): o
B, (z,t) = Bye't2eltor=et)

» Just after the waveplate, at x=e, the wave arrives with a time delay:

for the vertical polarization

Ty = e/vz - e/c - (nZ - 1) e/c (slow axis)

3 Ty = e/vy _ e/c — (ny _ 1) e/c for the hor(ifza(;r:t:)l(iz;nlarization
S E;J(x7 t) = Ey(xvt —Ty) = Eye' 2
/)%— H t — Elei(¢1+ko(ny—1)e)ei(k0m—wt)
/VV\/ . after the waveplate
1c°uz=¢ 7%

\X’a\le_ieakc_ E’z (.CC, t) _ Ez(xat i Tz) _ Ev2ei(¢2—{—k0(nz—1)e)ei(k0:v—wt)

2. Polarizers and waveplates

How to determine the form of the wave after a waveplate of thickness e?

1) Reasoning with the propagation speed

Ey (x, t) — Eleid)l ei(kox—wt)

» Before waveplate (x<0): . ‘
Ez (CE, t) — E2ez¢>2 ez(koac—wt)

» The modification of the sinusoidal plane wave by the waveplate can be
summarized by:

"y ¢1 — ¢} = d1 + ko(ny — 1)e
AN —

x=0

7 X

P2 — ¢y = P2 + ko(n. — L)e

z=e
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2. Polarizers and waveplates

How to determine the form of the wave after a waveplate of thickness e?

2) Reasoning with the wavenumber

in the waveplate

> Before the waveplate (x<0): E, (z,t) = Epei®1eikor—wt)
> Inside the waveplate (O<x<e): B’ (z,t) = Eye'?teilnukor—wi) k = nyko
» At the waveplate exit (x=e): E;’(e, t) = E, e pi(nykoe—wt)

— El ezd)l eznykoee—zwt

> After the waveplate (x>e): E' (z,t) = Eye'®1eimvkocgilholz—e)—wt)

==Y

_ Elei(cbl—i—kg(ny—l)e) ei(k:ox—wt)

Same for Ey: E’z (z,t) = Ezei(¢2—|—ko(nz—1)e)ei(k0x_wt)

Sameresult: @1 — ¢} = @1 + ko(ny — 1)e and  po — ¢y = P + ko(n, — 1)e

2. Polarizers and waveplates

How to determine the form of the wave after a waveplate of thickness e?

The waveplate modifies the phase difference ¢2-¢1:

Ap = ¢o — ¢P1

— AP =L — ¢ = Ad+ koAne wih An=n, —n,

Reminder: Ap =0 <¢—> linear polarization

Fi1=F; and A¢==+mw/2 <— circular polarization

Two cases of great importance:

koA?le:ﬂ' kOAne:

half-wave plate quarter-wave plat
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2. Polarizers and waveplates

Half-wave plate koAn e=T

E(ZL‘, t) _ ei¢1 (Elei(kzox—wt) gy + E2eiA¢ei(k:0x—wt)é»Z)

half-wave plate pIAY _ ilGim _ iAG

E/(x, £) = ot (Elei(kox—wt)é»yEE2€iA¢ei(kom—wt)é»z>

E’ = symmetric of E with respect to y-axis (or x-axis)
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2. Polarizers and waveplates
L8
Quarter-wave plate  kgAn e = B
Let’s consider light polarized linearly at 45° (E, = E, and A¢ =0):
¢ 7
7 o n ' i(kox—wt) 2 (kox—wt) =
45 . E(x,t) = el <Eoez( 0rTwW )ey + Eye*'o ez)
Iineargﬁllaljrization quarter-wave plate eiAqy _ ei(Aqﬁ-i—%) — ei%
z 'op2
, ™~
i S _ Eoei(kox—wt—l—qb’l)e—'y +Eoei(kox—wt+¢’1+§)€—»z

AN
—_/awtiﬁci\x)% El( t) —E L —wi I\ =
e z,t) =Eq cos(kox — wt + ¢7)éy,

left-handed . A
circular polarization E 0 Sl ( k ox wt + ¢ 1 ) €z

real electric field




2. Polarizers and waveplates
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Quarter-wave plate  kgAn e = 5
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2. Polarizers and waveplates

Common example: glasses for 3D movies

» 3D movies are based on the stereoscopic effect: the images seen by
each eye are slightly offset, so that you see the object in the movie at the
desired distance (that depends on the offset between the two images).

» How is it possible to have our eyes see two different images?

» Using high frame rates, half of the frames are for the left eye, and
the other half for the right eye. The 3D shutter glasses (active) are
synchronized so that each eye only sees the correct frames.

» Most common technology: the two images have different
polarizations, and the 3D glasses (passive) select the correct
polarization so that each eye sees a different polarization and
therefore a different image.

Not great: if you tilt your head, each
. o . eye starts to see both images... as if
vertical polarization for right eye u you didn’t wear 3D glasses.

horizontal polarization for left eye




2. Polarizers and waveplates

Common example: glasses for 3D movies

» Today, most 3D glasses work as follow:

left-handed circular polarization for left eye Great: insensitive to

. . L . glass orientation
right-handed circular polarization for right eye

» A 3D glass has two optical components:
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2. Polarizers and waveplates

Common example: glasses for 3D movies

» Today, most 3D glasses work as follow:

left-handed circular polarization for left eye Great: insensitive to

glass orientation

—

right-handed circular polarization for right eye

> A 3D glass has two optical components:
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2. Polarizers and waveplates

Question for next week:

Wear 3D glasses, look through a mirror at your
own eyes, and close one eye at a time.

What do you see?

Explain.

(exercice 1 of tutorial #11 may help)

Source of electromagnetic waves
(qualitative)




3. Source of electromagnetic waves (qualitative)

Looking back at Maxwell’s equations:

. — p — aB

div K = — curl B = ——

€0 ot
Maxwell’s Maxwell-Gauss equation Maxwell-Faraday equation
equations .= ~ - oF
divB =0 CUI'IB:/L()j +M0€0§

Absence of magnetic R .
Maxwell-Ampere equation
monopoles

So far, we have discussed the following situations:

static: J; = 0

div E = P divB =0
€0 o -
curl E = 0 curl B = fio]

electrostatics:
charge produces
electric field

magnetostatics:
current produces
magnetic field

time-dependent: 0, #£ ()

invacuum: p=0; 7 =0
MF equation: 1
electromagnetic N - ) n
induction AE c2 Oy E =0

electromagnetic waves
= light

3. Source of electromagnetic waves (qualitative)

Looking back at Maxwell’s equations:

. — p — aB
div £ = — curl K = ———
€o ot
Maxwell’s Maxwell-Gauss equation Maxwell-Faraday equation
equations .= - - oF
divB =0 CUI’]B:/LQJ—F/L()EOE
Absence of magnetic R .
Maxwell-Ampere equation
monopoles
What about the general case, the general picture?
» Electric and magnetic fields from charges and currents do not update
instantly everywhere in space: the information about the changes in the 8t 7é 0

charge and current distribution needs to propagate at the speed of light.

p#0

» Time retardation: the fields at time t and point r depend on the state of . .

charges and currents at r’ but at an earlier time t’, corresponding to a travel j 7£ 0
at ¢ (the condition is L=c(t-t’), L being the distance between r and r’).




3. Source of electromagnetic waves (qualitative)

Point charge ¢ moving from A to B
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» E-field hasn’t changed for r > cT (~ outside blue circle)
At t=T: E-field for r < ¢(T-6t) (~ inside blue circle) is the Coulomb field from charge g at point B.

» for r ~ cT (and over a thickness ~cét), orthoradial E and B-field: an EM wave is
propagating at ¢ away from the charge: the charge q has emitted the EM wave

—_— accelerating charges are source of electromagnetic waves

3. Source of electromagnetic waves

Antenna: oscillating current

Maxwell’s vx 10E o (p 05
equations ; AE - 2 912 v P T Hog,
p#0
j#0

3D d’Alembert wave equation with non-zero

right-hand side (source term).
. Oscillating currgnts (in antenna) are source of
electromagnetic waves (of same frequency)
: Through the Lorentz force, electromagnetic waves are

responsible for oscillating currents in antenna (reception mode)




Summary

Perfect conductor approximation: F — (O EM waves are reflected
eriect condictor approximation: o by perfect conductors

Dielectrics: €) = € = €,.€) Refraction index: 7, = C/U = /€,

- n? 0*E o 2mc
c? Ot W
Wave equation wavenumber wavelength vacuum wavelength
(dielectric of index n)
Polarizer: transmits a specific polarization
Waveplate: two main axis with different refraction indices
Half-wave plate: polarization transformed Quarter-wave plate: linear polarization
into its symmetric w.r.t waveplate axis can become circular and vice versa

Full set of Maxwell’s equation: fields need to propagate at speed of light (nothing
instantaneous), accelerating charge and oscillating currents are source of EM waves




