Electromagnetic waves and light

Polarization, EM waves in 3D, sinusoidal plane
waves, electromagnetic energy and Poynting vector

Feynman Vol. Il Chapter 20

Reminder from last lecture

2 2
0“u 1 0°u linear equation:

] H . J—
1D d’Alembert wave equation: o2 o ,U_Q Ot2 - principle of superposition applies

General solution:  u(z,t) = f(x — vt) + g(x + vt)
ut(x,t) = f(x —vt) u (z,t) = gz + vt)

right-travelling wave left-travelling wave

Preferred class of solutions:  w(z,t) = Acos(kx £ wt + ¢)  with  w = kv

sinusoidal waves dispersion relation
Complex representation: wu(x,t) = A e****“t) and  u(z,t) = Re [u(z, )]

Standing wave: 2 counter-propagating sinusoidal waves of same frequency and amplitude

N
One fixed end: reflection Two fixed ends: eigenmodes  ky = Tﬂ wn = knv
1D d’Alembert wave equation for E and B fields in vacuum:
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—» Maxwell’s equations have EM wave solutions in vacuum travelling at ¢




1D EM wave and its polarization

1. 1D EM wave and its polarization

j=0

In vacuum: p = ();

Maxwell’s equations lead to:
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1D d’Alembert wave
equation for E, and B,

!

E, = fi(x —ct) + gi(x + ct)
B, =[filx —ct) — g1(z + ct)]/c

In1D: 0,

E, =
B, =
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=9,=0; V=0
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OE, 0By
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0B, OF,
or = Ho€o ot
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1D d’Alembert wave
equation for E; and By

I

fo(z — ct) + ga(x + ct)
[—fa(x — ct) + ga(x + ct)]/c




1. 1D EM wave and its polarization

Two independent EM waves in 1D:

1By, Bz}

EM wave with linear % _ _a;iz
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polarization along y OB, OE,
(say horizontal polarization) T oy HocoTg
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polarization along z 0B, OF.
(say vertical polarization) o Moo
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(by convention, polarization specifies
the direction of electric field)
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Electromagnetic waves in 3D




2. Electromagnetic waves in 3D

To obtain the 1D d’Alembert wave equation for E,, we started by
Maxwell-Faraday (projected along z) and we took the x derivative:

D[ o, . 2" J
ox PEs Bt

To generalize 1D d’Alembert wave equation to 3D, need to do the same

but it involves:
fatE- B ]

Reminder on the Laplace operator or Laplaman (used in Poisson equatlon):
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2. Electromagnetic waves in 3D

Relation between curl of curl and vector Laplacian:

—

ﬁx(ﬁxﬁ)zﬁ(v-@—ﬁﬁ

With this relation, Maxwell’s equations in vacuum lead to the 3D
d’Alembert wave equation:

RE-L12E AE-L2B _;
c? Ot? c? Ot?

3D d’Alembert wave equation for E and B fields in vacuum

which writes explicitly:
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Sinusoidal plane waves and EM
spectrum

3. Sinusoidal plane waves and EM spectrum

Definition of plane waves

Our 1D waves were only x-dependent: E, (7,t) = fi(x — ct) + g1(z + ct)

At a given time to, wavefronts are surfaces defined by: Ey(f’, to) = const

—> wavefronts are planes = = €, - ¥ = const

1D waves in 3D are called plane waves, as their wavefronts are planes
perpendicular to the axis of propagation.




3. Sinusoidal plane waves and EM spectrum

Definition of plane waves

In 3D, we can consider a general plane wave that only depends on:

E=i-7

where 77 is a unit vector defining the axis of propagation. If (ﬁ, u, 77) is an
orthonormal basis, then the two linearly-polarized plane waves are:

E,rt)= fi(n-7—ct)+ g1(7 -7+ ct)

E,(7,t) = fof(l - 7 — ct)|+ go(7i - 7'+ ct)

replace x—ct

3. Sinusoidal plane waves and EM spectrum

Sinusoidal plane waves

—

Defining the wave vectoras: k = k71

E, = f (ﬁ T — Ct) = En COS(E T —wt + gbl) travelling in the
Ev — fQ(ﬁ . 7:’_ Ct) — E2 COS(E . 77’_ wi _|_ ¢2) direction of k
E = E,i+ E,7

Complex notation:

B(7.t) = ByeiEr—wn| Eo=memis Bt
=\ =0 E = Re[E]

—

(ﬁ, ﬁ, U) orthonormal basis




3. Sinusoidal plane waves and EM spectrum

Sinusoidal plane waves

Why using sinusoidal plane waves?

» Again, strictly speaking, a wave with infinite extent and infinite energy has no

physical reality.

» It’s a good approximation for many physical situations.

> There is no simple form for the general solution of the 3D d’Alembert equation,
but any solution can be written as a superposition of sinusoidal plane waves

(thanks to the Fourier transform).

E_;(Fa t) — m g(kxa ky; kz)ei(E'F_wt) dkxdk‘ydkz —{—. 54/"‘23—' ,_7+ w’t

1 w

t sinusoidal plane wave (w([:) 7

continuous sum
(superposition)
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3. Sinusoidal plane waves and EM spectrum

Injecting sinusoidal plane wave in 3D d’Alembert wave equation

— — ) _’- r— > = ]. 82E —
E:EOe’L(kT wt) in AE__2 . :0
c? Ot
_ HIZH dispersion relation
= W = C for 3D d’Alembert wave equation




3. Sinusoidal plane waves and EM spectrum

Maxwell’s equations for sinusoidal plane waves

—

Invacuum: p = 0; 5 =0  Sinusoidal plane wave: F = Eoei(k'F_Wt)

— — — — —
k-E=0 kx E=wB
Maxwell-Gauss equation Maxwell-Faraday equation
—
— — — — —
k-B=0 kxB=—wE/c
Absence of magnetic Maxwell-Ampére equation

monopoles

3. Sinusoidal plane waves and EM spectrum

Maxwell’s equations for sinusoidal plane waves

E-E:O — EJ_IZ

k-B=0 — Blk

kx E=wB = gznxﬂ with 7= k/||E|
C

Structure of the sinusoidal plane wave:

<k, E, B) forms a direct trihedron




3. Sinusoidal plane waves and EM spectrum

Electromagnetic spectrum
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Polarization of sinusoidal plane waves




4, Polarization of sinusoidal plane waves

Let’s consider a sinusoidal plane wave along the x-axis again: k = ké},;
Sinusoidal plane wave:
= B ik r—wt) E:Elcos k-7 —wt+ 1)€,
E=Ege ( " $1)€y
complex + Eo COS(k} T —wt + ¢2)€z

. = ; — ; — real
with By = Eqet €y + Ese'? &,

We have already seen linearly-polarized waves:

—

E, = Eje'" €y (E2=0) E = E, COS(E 7 —wt 4+ ¢1) €,

horizontal linear polarization

Eo — Eye'®2 e, (B, =0) E = E COS(E T —wt + ¢2) €,

vertical linear polarization

4. Polarization of sinusoidal plane waves

=
Let’s consider a sinusoidal plane wave along the x-axis again: k = ké’x

Sinusoidal plane wave:

E’ _ E" pi(k T—wt) E =F;cos(k -7 —wt + ¢1)€y
L = Ly B
complex + Eacos(k - 7' — wt + ¢2)€,
with E, = E1e'% &, + Fye'? &, real
z x . . . .
A © Obligue linear polarization:
57 - Ei = FEjcosa; FEy = FEysina
/{I/ P1=¢2=2¢
&
4 7 E, = Eye'® e, i c. complex amplitude
P “ E, = Epe'? (cosa €y, +sina €,) p P
s d linear polarization o -
< making an angle a E =E COS(k - — wt + ¢)
w.rt. to y-axis . . . real electric field
X (cosa €, +sinae,)




4, Polarization of sinusoidal plane waves

=
Let’s consider a sinusoidal plane wave along the x-axis again: k = kéx

Sinusoidal plane wave:

= B ik r—wt) E =FE; cos(k - 7 — wt + 01)€,
L = Eoe ( 3 )€y
complex + Eycos(k - 7 — wt + ¢2)€,
with EO = E1€i¢'1 €y -+ E2€i¢2 €z real
L X Right-handed circular polarization:
(clockwise rotation if looking against direction of propagation)
4~ F E, = E, = E,
// rﬂ . ¢2 — ¢1 - 7T/2
| L. . .
l‘ \_/ I i’ '} E,= Epe' (€y —i€%) complex amplitude
' // — —
A P . E =Eycos(k -7 —wt+ ¢1) €
c,@c_ngb\ 5€ i E real electric field
. sin(k -7 — wt €.
Jl,b\’of&o’h + Eo sin( té1)é:

4. Polarization of sinusoidal plane waves

=
Let’s consider a sinusoidal plane wave along the x-axis again: k = ké’x

Sinusoidal plane wave:

F = E"Oei(k-F—wt) E =F;cos(k -7 —wt + ¢1)€y
complex + E2 COS(k T —wt + ¢2)€Z
L ox Right-handed circular polarization:
A (clockwise rotation if looking against direction of propagation)
. T
‘\ kJ / '}\
\ //
T —C,@(_QW\.R
JUD\/O:&@"\




4, Polarization of sinusoidal plane waves

=
Let’s consider a sinusoidal plane wave along the x-axis again: k = ké},;

Sinusoidal plane wave:

E’ _ Eoei(E-F—wt) E =E; COS(E 7 —wt + ¢1)€y
complex + Eo COS(E - — wt + ¢2)5z
with E, = E1e' &, + Fye'?? &, real
- ©x Left-handed circular polarization:
0 (anti-clockwise rotation if looking against direction of propagation)
//—-\\f E, = Ey = E,
,’/\ \ P2 = ¢1 + /2
l‘ kj ,; 7‘} EO = Eye'® (ey +i€y) complex amplitude
. , B L )
- Mtﬁcﬁwﬁe B =Eq cos(k f —wtt o), real electric field
o Latiom — Epsin(k -7 — wt + ¢1) €.

4. Polarization of sinusoidal plane waves

=
Let’s consider a sinusoidal plane wave along the x-axis again: k = ké’x

Sinusoidal plane wave:

E _ E" ez’(E-F—wt) E =F; COS(E 7 — wt + ¢1)€y
=~ — Ly 3
complex + Escos(k - 7 — wt + ¢2)€,
with EO = Elei‘f’l e“y + E2675¢2 e, real
T @ xL
n
EL - =
—7
/ E General case: elliptical polarization
/E’i } El, E27 ¢17 ¢2 are arbitrary
cﬂaaéwi;c
&L a/vﬁ_'cfaoﬁw/éc
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Electromagnetic energy and Poynting
vector

5. Electromagnetic energy and Poynting vector

In electromagnetism, we have seen the equation stating the conservation of charge. We
want to proceed by analogy for electromagnetic energy. Energy is also a conserved
quantity and we would like to find an equation stating this energy conservation.

We consider the general case:  p # 0; 57& 0

Energy conservation in integral form should read:

. 5@2.0?6"1 _J\wtb ag'
eéuf m,tu_ _ . t, %
\/ogmr\L \/ _ﬁt—[ 'gsic(,.\/] %&N’M}\/ mwlj’n\/
(,(,M\Jrz

('\SUAJ‘_‘L S___ )\/ dt ng}m

Work done by Lorentz force per unit time on charge dq in infinitesimal volume dV:
dPLorentz = [dQ(E + 7 x é)] )
—pdVE-©=j-EdV

rate of Lorentz work done
on charges per unit volume




5. Electromagnetic energy and Poynting vector

Charge conservation in local form: % = —divj

Energy conservation in local form should read something like:

8@ — - AM*Q
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5. Electromagnetic energy and Poynting vector

Such an equation can be obtained from Maxwell-Faraday and Maxwell-Ampere equations:

curl E = —8—B 2]
4 0B
Maxwell-Faraday equation B-carlE—FE-curlB=-DB- s
3~ o + oo E ; - = . OF
[ curl B = o] +N060§ (—E) — pog - E — poeoE - o

Maxwell-Ampére equation

2 2

Ex B . -
+ div <L> - j.E
Ho

S o 4 - 0 El2 BII2
:diV(EXB):_“OTE_a[ﬂoEo' I +|| I

:2
ot

1= 1|2
Seoll EJ? + 75—
Ho

Vector analysis identity: div (U X ‘7) =V.curlU — U -curl V




5. Electromagnetic energy and Poynting vector

Energy conservation in local form:

+ le H = —] . E Poynting’s theorem

-
1 =0, 1B
. _ - 2 electromagnetic
with  Uem = 9 €0 HEH + 2,“0 energy density
= E X B gives direction (_)f EM energy flow, and amogn'g of
H e EM energy passing per unit area and per unit time
,MO through a surface element perpendicular to I1

Poynting vector

5. Electromagnetic energy and Poynting vector

Poynting’s theorem applied to EM sinusoidal plane wave in vacuum, linearly polarized:

E:EOCOS(E-F—wt) €y k= ké,
. fixE E .
B="" = 2 cos(k -7 — wt) €,

c c

Electromagnetic energy density:

1= B2 (1 B2 L
uem:§eo|\E||2+ o 560E§+2uﬁ cos?(k - ¥ — wt)

= ¢ B cos?(k - 7 — wt)
Poynting vector:

. ExB
.

2 2/7. = —
= cegky cos (k' = Wt) €x electromagnetic energy is moving
Ho > at c in the positive x direction

= CUem €y




5. Electromagnetic energy and Poynting vector

Electromagnetic wave period is very short, we can perform average over a time period:

(Uem) = €0 B2 (cos?(k - 7 — wt))

1 ) <ﬁ> = ¢ (Uem) €z = —eocEg €

For EM energy density and Poynting vector, complex notation can only be used to get
average value:

1 «wE-E BB | ExB
m) = =R — —_— II) = - Re| =——
(Uem) 5 e( 5 + 2,u0) (IT) 5 e< o >
Summary
Electromagnetic waves in 3D:
2 1 20
&E_” _ i (9 E —_ 6 Aé - i a B _ 6 3D d’Alembert wave equation
c2 8t2 o 2 Ot2 T for E and B fields in vacuum

Sinusoidal plane waves:

|tz

— — (o = ﬁ X E e = — —
(7, 1) = Eoez(k Fowi) B = — (k =kn, F, B) is a direct trihedron

Light wave polarization: can be linear, circular or elliptical

o ou s L Povnting:
Energy conservation in local form: a;m +divl=—j-FE ;}g; ;ng s
— 2 N N
= 1 HEH2 + M = E x B direction of EM energy flow,
fom ™ 2 A 2110 - 4o power per unit surface

electromagnetic energy density Poynting vector




