Wave physics

1D wave equation, travelling waves, sinusoidal
waves and complex representation, standing waves,
eigenmodes, electromagnetic waves in vacuum

Feynman Vol. Il Chapter 20

Reminder from last lecture

. o= P _ 0B

div £ = — curl K = ———
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Maxwell’s Maxwell-Gauss equation Maxwell-Faraday equation B
equations R - - oF
div B =0 curlB:uoj—i—uoeoa

Absence of magnetic Maxwell-Ampeére equation
monopoles
1 g _1 Light is no longer something else. It’s the
C = =3.0x10°ms propagation of an electromagnetic disturbance

€oHo according to the laws of electromagnetism.

> Maxwell’s equations describe electricity,

magnetism and light in one single unified theory.




Examples of waves

1. Examples of waves

What is a wave in physics?

A wave is a physical disturbance propagating in space or oscillating. Propagation is
associated to energy transport, but no transport of matter constituents.

Examples?

» Vibrating string (or 2D membrane)

Physical Disturbance?

String vertical displacement

» Sound in air Pressure, air density, longitudinal displacement
» Earthquake (seismic waves) Displacement
» Water waves Water displacement, surface elevation
» Gravitational waves Spacetime metric defining distance

» Plasma waves

> etc.

Charge density, electric field




1. Examples of waves

s
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Vibrating string

Mass per unit length: p = dM /dx

String tension: T = const Ja,(‘!-,t)
oy —
Small angles: tana = —— ~ « 'S
Ox
Applying Newton’s second law to a string element dx, we get (see tutorial #9):
2 2
@ — ﬁ @ =0 y(x,t) is the string vertical displacement
oxz2 T Ot?
d’Alembert wave equation
1. Examples of waves
Sound in air, in one dimension
Small perturbations of pressure P QML € Q,M,i’
and volume mass density u: da. Pi»‘)(
/,
P=PFP+ P P < Py - - - - P —— = - —— — S>L
with E((r,f‘) '/ ﬁﬂ(z-ro'x, t‘)
= [o + H1 p1 << o

Mass conservation

Thermodynamics - adiabatic process:
& 8u1 ov

PV7 =const =—> P, =ku; with K= — =1 —— 4+ pup=—=0 eq. (2
o 140 ot ox
() ) aP

Newton’s second law for air element dx: uoa—: = _B_xl eq. (3)
Combining equations (1-3), we get:

0*’P,  10%P, o |

— — 0 P1(x,t) is the air pressure perturbation
Ox? Kk Ot2

d’Alembert wave equation




Solutions of 1D d’Alembert
wave equation

2. Solutions of 1D d’Alembert wave equation

- - 0*u 1 0%u
D’Alembert wave equation in one dimension: - — ——— =0

ox2  v? Ot?
Linear equation: principle of superposition applies.

The general form of the solution of d’Alembert wave equation is:

u(z,t) = f(z —vt) + g(x + vt)

With f and g being arbitrary functions. Can be demonstrated by performing a
change of variables to {=x—vt and n=x+vt.




2. Solutions of 1D d’Alembert wave equation

Travelling wave: ™ (x,t) = f(z — vt)

~

WS0)= [) (s t)= fCoot)

JUT S,

{(,L_@[j 45 g/x) Ewupa.fco'{ % T

The wave solution u* is a signal travelling without any deformation at velocity v
towards the right (in the direction of increasing x).

Vibrating string Sound
> The constant v in d’Alembert wave /T OP
vV = —_ v = =

equation is the speed of the wave.

2. Solutions of 1D d’Alembert wave equation

Second form for the travelling wave: U (:Ij‘, t) = g(:v + vt) translation by -vt

The wave solution u- is a signal travelling without any deformation at velocity v
towards the left (in the direction of decreasing x).

Note: the general solution is not necessarily a travelling wave, but can always be
written of the sum of wave u+ travelling towards the right and of a wave u
travelling towards the left.

05" ”

Example of right-
travelling wave

ut(z,t) = f(z — vt)

u(z,t)
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2. Solutions of 1D d’Alembert wave equation

Second form for the travelling wave: U (aj, t) = g(aj + ”Ut) translation by —vt

The wave solution u- is a signal travelling without any deformation at velocity v
towards the left (in the direction of decreasing x).

Note: the general solution is not necessarily a travelling wave, but can always be
written of the sum of wave u* travelling towards the right and of a wave u-
travelling towards the left.

1
Example of left- 081 n
travelling wave g
5
u(z,t) =g(z+ot)
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2. Solutions of 1D d’Alembert wave equation

Second form for the travelling wave: U (:C, t) = g(:v + vt) translation by —vt

The wave solution u- is a signal travelling without any deformation at velocity v
towards the left (in the direction of decreasing x).

Note: the general solution is not necessarily a travelling wave, but can always be
written of the sum of wave u+ travelling towards the right and of a wave u
travelling towards the left.

Example of
general solution = .
u(z,t) =f(x —vt) B

+ g(x + vt)
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2. Solutions of 1D d’Alembert wave equation

Second form for the travelling wave: U (aj, t) = g(aj + ”Ut) translation by —vt

The wave solution u- is a signal travelling without any deformation at velocity v
towards the left (in the direction of decreasing x).

Note: the general solution is not necessarily a travelling wave, but can always be
written of the sum of wave u* travelling towards the right and of a wave u-
travelling towards the left.

More complex
case

ut(z,t) = f(z — vt)
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2. Solutions of 1D d’Alembert wave equation

Second form for the travelling wave: U (:C, t) = g(:v + vt) translation by —vt

The wave solution u- is a signal travelling without any deformation at velocity v
towards the left (in the direction of decreasing x).

Note: the general solution is not necessarily a travelling wave, but can always be
written of the sum of wave u+ travelling towards the right and of a wave u

travelling towards the left.

More complex
case

u(x,t)

u (x,t) = g(x + vt)

0 200 400 600 800 1000




2. Solutions of 1D d’Alembert wave equation

Second form for the travelling wave: U (aj, t) = g(m + ”Ut) translation by —vt

The wave solution u- is a signal travelling without any deformation at velocity v
towards the left (in the direction of decreasing x).

Note: the general solution is not necessarily a travelling wave, but can always be
written of the sum of wave u+ travelling towards the right and of a wave w
travelling towards the left.

More complex

’U,(ZIZ, t) :f(IIZ o ’Ut)
+ g(x + vt)
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2. Solutions of 1D d’Alembert wave equation

What happens if there is a fixed end? = There is a reflection.

| ,‘[/'\ u(x,tg o

Let’s assume we have an incident wave coming from the right (x>0)
and travelling to the left:

Uine(2, 1) = g(z + ct)
The solution with fixed end at x=0 reads:
u(z,t) = f(z — vt) + g(a +vt) =|-g(~(z — vt))|+ gz + vt)

reflected wave incident wave




2. Solutions of 1D d’Alembert wave equation

Example of reflection:

0 200 400 600 800 1000
&

150 _ _ inuded wave
1L —= e fgd"a‘ wave
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Sinusoidal waves




3. Sinusoidal waves

There is a preferred class of solutions called sinusoidal travelling waves:

right travelling

u(wz,t) = f(z —vt) = Acos(kx — wt + @)

left travelling

w(w,t) = g(x + vt) = Acos(kx + wt + @)

: _ dispersion relation (relation between
with W = k"U w and k) for d’Alembert wave equation
w (angular) frequency k = (,U/’U wavenumber
21 21
T = — time period /\ = ? = ’UT wavelength

3. Sinusoidal waves

right travelling
sinusoidal wave

u(x,t)

u(z,t) = A cos(kx — wt)
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Complex representation (greatly simplifies calculation with sinusoidal functions):
Q(ZU, t) _ A ez(kx—wt)
with A = A e'?

u(x,t) = A cos(kx — wt + ¢)

u(x,t) = Re [u(x,t)]

The real signal is recovered by taking the real part:




3. Sinusoidal waves

Why using sinusoidal waves?

» Strictly speaking, a wave with infinite extent (to x—+o0 and x—-o0) and infinite
energy has no physical reality.

» But it’s a good approximation for many physical situations in which the signal is
sinusoidal with a large extent (both in space and time).

, neaP want <am
> Even more important:

sum (surmfos'l'kﬁ"h ) dg SWSOL'D(AF LAV

Sinusoidal waves form a base of the solution space. Translated in mathematics, it’s
the Fourier transform (note: discrete sum = Fourier series for periodic functions):

(@)

u(a )= [ A(k) etV dk e L

L< w«\,{#em ar a

oo T

T sinusoidal wave
continuous sum
(superposition)

3. Sinusoidal waves

Example of superposition of sinusoidal waves
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: Summing sinusoidal waves

Often called “wave packet”




Standing waves and eigenmodes

4. Standing waves and eigenmodes

Superposition of two counter-propagating sinusoidal waves of frequency
w of same amplitude:

u(z,t) = ug cos (kx — wt) + ug cos (kxr + wt)
right travelling left travelling

—  u(x,t) = 2ug cos(kx) cos(wt)

standing wave
(does not travel, but oscillates)

A

Extrema (minimum and maximum): kxn = nm — Ty = N—
™ A A
Nodes (u=0): k‘ajn = 5 + nm — Ty = Z + n§

Trigonometric identity:  cos (A + B) = cos A cos B F sin Asin B




4., Standing waves and eigenmodes

__  Leff f'/m\/emﬁ'r\

- Sl—é,,\,{w} wave (5""")

° m,oo‘@
° exbm

standing wave

u(x,t) = 2ug cos(kx) cos(wt)
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4. Standing waves and eigenmodes

What happens if there are two fixed end?

We look for standing wave . OJ
fixed ond

solutions, who have fixed

Jixw’ e/wA
nodes separated by 1/2. 51_ .

A
—> L=N_-, NeN° \[
2 _’/'\u — => X

2r Nm X0
i kj = — = —
NN T L

Standing waves are solutions only for wavenumbers that are integer multiple of n/L.

They are called eigenmodes and read:
un(z,t) = (Acos(kyz) + Bsin(knyx)) (C cos(wnt) + Dsin(wnt))

with  wy = knv

un(z,t) = sin(kyz)(C cos(wnt) + Dsin(wpt))

un(0,t) =0 = A=0 =

eigenmodes




4., Standing waves and eigenmodes

What happens if there are two fixed end?

General solution as a discrete sum (superposition) over the eigenmodes:
“+oo
u(a,t) = Y sin(kyz) [Cy cos(wnt) + Dy sin(wyt)]
N=1
Example:

1t
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u(x,t)
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1D electromagnetic wave in vacuum




5. 1D electromagnetic waves in vacuum

Electromagnetic fields in vacuum:  p = ( ; =0

We assume the fields only depends on x (1D case):

0
0 0 - v
Z
y 0
Under these assumptions, Maxwell’s equations:
aEl’:o 0 x |B, =|-0,E, =—|0,B,
8$ O Ez 8mEy 8th
Maxwell-Gauss equation Maxwell-Faraday equation
T -0 0 x |B, = |—0.B, = uoeo |OLE,
ax 0 Bz 8wBy ath
Absence of magnetic Maxwell-Ampere equation
monopoles

5. 1D electromagnetic waves in vacuum

Equations for E, and B::

on, __oB. oB. . on,
R T oz H00T5;
0%E, 0%E, 028, 028,
= g Mocogm =0 5oz Hocogm =0
1

- d’Alembert wave equation for E, and B, with speed ¢ =

v H0o€0

—P Maxwell’s equations have wave solutions in vacuum travelling at ¢




Summary

O0%u 1 0%u linear equation:
) . . quation:
1D d’Alembert wave equation: W - U_Q ﬁ =0 principle of superposition applies

General solution:  u(z,t) = f(xz — vt) + g(z + vt)
ut(z,t) = f(x — vt) u” (z,t) = g(x + vt)
right-travelling wave left-travelling wave

Preferred class of solutions:  u(x,t) = Acos(kx £ wt + ¢) with w = kv

sinusoidal waves dispersion relation
Complex representation: u(x,t) = A e'***“t) and  wu(z,t) = Re [u(z,1)]

Standing wave: 2 counter-propagating sinusoidal waves of same frequency and amplitude

N
One fixed end: reflection Two fixed ends: eigenmodes  ky = Tﬁ wn = knv
1D d’Alembert wave equation for E and B fields in vacuum:
’E, OB, _ 9B, 9B, _,
oz2 M0 o oz2 Mg

—» Maxwell’s equations have EM wave solutions in vacuum travelling at ¢

Reminder on grading system

> Your final grade for PHY 104 will be composed of:

Mostly based on participation (75%)

All homework
assignments
20%

Final exam

Midterm exam Project

20% 20%

40%

Only based on results (no
points for participation)

Practical considerations for the project:
» You’ll have 2 months to work on it, project due on 14 June 2018
> You can work in groups of up to 4 students, only one project to submit per group

» Topics explored: introduction to special relativity incl. time dilatation (10 points),
E=mc? (5 bonus points), acceleration to near speed of light (10 points). Project
grades above 20/20 (up to 25/20) will be accounted when computing the final grade.

» The project includes numerical work to solve a relativistic equation of motion.




