Electrostatics

Work and electric potential, Poisson equation,
electrostatic energy

Feynman Vol. Il Chapters 4-8

Reminder from last lecture

Flux: ¢ = // E-dS  anddivergence: div E = OF, , OBy , OF;
S Ox oy 0z

flux over infinitesimal closed
surface per unit enclosed volume

measures flow through S

Gauss’ law Maxwell-Gauss equation
— — : t . —> p
#E.dS:Qm divE = —
S €0 €0
integral form differential form

Symmetries: reduce number of variables and constrain vector orientation

Dielectrics Conductors at equilibrium
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E=0 €0 the surface
due to polarization

inside outside, near the surface




Work and electric potential

1. Work and electric potential

Work that an external operator has to provide to carry a charge q along a
path going from point a at t; to point b at t2 along the path I":

b

t2 — b — —
t
1 a (I)
O
To move the charge g, the operator has to work against the electric force,
and therefore to provide a force that is opposed to the electric force:

b
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1. Work and electric potential

The circulation of the electric field along I' is defined as:

c;/ﬁ.d?
I

Infinitesimal circulation element: dC = FE -dl

Does the work W = -gC depend on the path I'?

1. Work and electric potential

—
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> Electric field E7 from a single charge ¢ at the origin: [/} (”I“) = d 3
dmeg T
— ,'7‘
» We have the following identity: grad (1/r) = —




1. Work and electric potential
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» Electric field E7 from a single charge g1 at the origin: ~ F/q (7“) = q —3
dmeg r
—_ ,’7
» We have the following identity grad (1/7“) =——
r
= qQ — — Q1
» Therefore: Eqi(r)=— rad (1/r) = —grad
()=~ grad (1) = —gmad ()
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We define the electric potential from g1 as:
q1
4megr

1 q1
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1. Work and electric potential

» Using the principle of superposition, we have for an arbitrary charge
distribution:

E(F) = —grad V(1)
with:

1 qi
V() = K g d T K
0= ey 2 =71 0= 00, ] 7

discrete charge distribution continuous charge distribution

» Common choices for the constant K of the potential:

- Absolute potential, going to zero at infinity: V(OO) =0 = K=0

- Potential with respect to the ground: Vground =0




1. Work and electric potential

> Back to the circulation:  dC = E . Ciz = —m V. Cﬁ = —dV

» Finally, the work to carry a charge g reads:
b

b
W:—q/E-cﬁzq/dvqu(b)—V(a))—»

a (I) a(I)

The work is independent of
the path between a and b

1. Work and electric potential

Electric potential energy of a charge g:

Ly
W =E,bb)— E,(a)

The force is conservative

= —

The force is a gradient
of a potential energy

The work is path independent




Electric circulation and curl operator

2. Electric circulation and curl operator

Electric field circulation over a loop (closed path), from point a to point a:

r) /E 7:—/dvz—(V(a)—V(a)):o
a (T) a (T)

Using the notation for a loop integral, the results reads:

%E dl =0 The electric field is a

conservative field

Valid in electrostatics only




2. Electric circulation and curl operator

Circulation along an infinitesimal loop, _ Z Ny
a square in Oxy plane for example: dC = . E - dl

o ) ) Bottom side: E - dl = E.(z,y,z)dx
(9t % (“"l"/”[}* 3) Top side: E -dl = —FE (x,y + dy, z)dx

Sum of top and bottom:
T Uké (Ee(z,y,2) — Ex(x,y +dy Z))dfvz—aEm
,\ x y T 9 9 8y
Sum of left and right:

) Jor  (mrdzy)
JS= dx JS, Total over all 4 sides:
or, OF, B -
dCyy = ( T )dS = (curl E) ds

2. Electric circulation and curl operator

Infinitesimal circulation in Oyz plane:
(+A§/z)

WW OE. OE .
_ z Y _
)/ dc,, = ( o )dS (curl E)m ds
yzo{z) OLS OLKKJ\Z
Infinitesimal circulation in Oxz plane:
? 4§ dudz
Eac Ez —

) I (8 9 ) ds = (curl E) ds
4 0z ox y
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The component of the curl along a given axis is the circulation
along an infinitesimal loop in the perpendicular plane per unit area




2. Electric circulation and curl operator

To remember:

flux €——>» div circulation <€——> curl

The circulation of the electric field along any loop is zero:

%E_) ° d_z — O integral form

which gives for infinitesimal loops: (Curl E) -ndS =0 M7

— CUI’I E — 6 differential form

Valid in electrostatics only

Poisson equation




3. Poisson equation

> We have seen that the electric field is a gradient of a potential:
E = —grad V
» Because of the identity: curl (grad f) =0 Vf (to verify at home)

the electric field automatically satisfies: curl E=0

» Maxwell-Gauss equation however leads to:

divE=" — div(gradV)=-2

€0 €0

3. Poisson equation

> We have seen that the electric field is a gradient of a potential:

E = —grad V
> Because of the identity: curl (grad f) =0 Vf (to verify at home)

the electric field automatically satisfies: curl E=0

» Maxwell-Gauss equation however leads to:

wE=2 = div(gradV)=-2
€0 €0
p 2V PV 9V
e ith- 21
— AV €0 with: AV =V*V = 92 + 3,7 + 5.2

Laplacian (Laplace operator)

Poisson equation




Summary of electrostatic equations

4. Summary of electrostatic equations

Coulomb’s law
+ superposition

for electric potential:

=, 1 qi
V(7 = K
"= Treg Z il

B} 1 o) s,
Vv = d K
(") m// T ka

E = —grad V

Electric field
equations

divE="*
€0

—

curl £ = 0

Electric potential
equations




Electrostatic energy of a charge distribution

0. Electrostatic energy of a charge distribution

Potential energy of a single charge g in an external electric field: Ep = qV
Definition

The electrostatic energy U of a charge distribution is defined as the work
required to assemble the system by bringing the charges from infinity.

"1 bringing single charge g1 from infinity in empty space: U; =0
. N C e . S\ Q2
. 1. bringing g2 from infinity: Uiz = @2Vi () = pr—
. Uiz = Uia + q3V1(73) + q3Va(73)
. 1* bringing gs from infinity: _ Qe q193 9293
dll 0\5 471’607"12 47‘(607“13 47T607°23

. e q:q; 1 qiq;
assembling N charges from infinity: U = B E— _4y
g g y Z 477'607"1'3' 2 Z ; 47T€07“ij

all pairs 7




5. Electrostatic energy of a charge distribution

Electrostatic energy of a discrete charge distribution:

1 qiq;

2 Amegr;;
i,J

U:

Electrostatic energy of a continuous charge distribution:

// dq1dgz // BF 3
471'60“7“2 —7’1” 47-‘_60”72 _T1H

all space all space

which can be rewritten in a simpler form:

U =

1 —

= r1)V(r1)d°r since V(i) = / 2) g3
2 / ATV = dreollz =7l
all space all space

0. Electrostatic energy of a charge distribution

Can we know where the electrostatic energy is located in space?

1 o’V 9?V 9%V p
— AV = = ——
We have U 5 /// pV dxdydz and 972 + 9,2 + 922 o

2 2 2
Therefore: U = —— /// 0 V 8 v 5 T oV V dzxdydz
8962 0722




5. Electrostatic energy of a charge distribution

Can we know where the electrostatic energy is located in space?
1 2V 9V 9%V p
We have U = 5///,0‘/ drdydz and AV = 92 + 0 + 5.2 — _a

2 2 2y,
Therefore: U = —— /// (g@g 0 ‘2/ + %z ) V dxdydz

(12
Finally, we obtain: U:///EOHQEH d3f’:///ud3f’

with the electric energy density u: u = 560 HEHQ

—P The energy is localized in space where the electric field is.

Summary
circulation along

. g infinitesimal loo
New law/equation for the electric field r) P

%E-dlzo curl £ =0
integral form differential form
Electric potential Work to carry charge Potential from single
— qgfromatob charge ¢ at origin
E=—gradV .
p W =q[V(b) = V(a)] V(7) =
AV = —— (7) 4dmegr
€0 conservative force
Poisson equation path-independent
Electrostatic energy of a charge distribution U — /// u 37
1 4:q; 1 /// 3
U=— ‘7 U=- Vd 1 =
2 dmegri; 2 P " u = §€0||EH2

1,J
discrete distribution continuous distribution energy density




