Electrostatics

Work and electric potential, Poisson equation, electrostatic energy

Feynman Vol. II Chapters 4-8

Reminder from last lecture

Flux:
$$\phi = \iint_S \vec{E} \cdot d\vec{S}$$
 and divergence: $\operatorname{div} \vec{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z}$

measures flow through S

integral form

flux over infinitesimal closed surface per unit enclosed volume

Maxwell-Gauss equation

$$\operatorname{div} \vec{E} = \frac{\rho}{\epsilon_0}$$

differential form

Symmetries: reduce number of variables and constrain vector orientation

Dielectrics

Conductors at equilibrium

$$\epsilon_0 \longrightarrow \epsilon = \epsilon_r \epsilon_0$$

due to polarization

$$\rho = 0$$
 $\vec{E} = \vec{0}$
 $\vec{E} = \frac{\sigma}{\epsilon_0} \vec{n}$

all charge on the surface

inside outside, near the surface

Work and electric potential

1. Work and electric potential

Work that an external operator has to provide to carry a charge q along a path going from point a at t_1 to point b at t_2 along the path Γ :

$$W = \int_{t_1}^{t_2} \vec{F}_{\text{op}} \cdot \vec{v} \, dt = \int_{a(\Gamma)}^{b} \vec{F}_{\text{op}} \cdot \vec{dl}$$

To move the charge q, the operator has to work against the electric force, and therefore to provide a force that is opposed to the electric force:

$$\vec{F}_{\text{op}} = -q\vec{E}$$
 \longrightarrow $W = -q \int_{a(\Gamma)}^{b} \vec{E} \cdot d\vec{l}$

1. Work and electric potential

The circulation of the electric field along Γ is defined as:

$$\mathcal{C} = \int\limits_{\Gamma} \vec{E} \cdot \vec{dl}$$

Infinitesimal circulation element: $d\mathcal{C} = \vec{E} \cdot \vec{dl}$

$$d\mathcal{C} = \vec{E} \cdot \vec{d}\vec{l}$$

Does the work W = -qC depend on the path Γ ?

1. Work and electric potential

- $\vec{E}_1(\vec{r}) = \frac{q_1}{4\pi\epsilon_0} \frac{\vec{r}}{r^3}$ ► Electric field E_1 from a single charge q_1 at the origin:
- $\overrightarrow{\operatorname{grad}}(1/r) = -\frac{\overrightarrow{r}}{r^3}$ ► We have the following identity:

1. Work and electric potential

• Electric field
$$E_1$$
 from a single charge q_1 at the origin: $\vec{E}_1(\vec{r}) = \frac{q_1}{4\pi\epsilon_0} \frac{\vec{r}}{r^3}$

• We have the following identity:
$$\overrightarrow{\operatorname{grad}}\left(1/r\right) = -\frac{\overrightarrow{r}}{r^3}$$

► Therefore:
$$\vec{E}_1(\vec{r}) = -\frac{q_1}{4\pi\epsilon_0} \overrightarrow{\operatorname{grad}} (1/r) = -\overrightarrow{\operatorname{grad}} \left(\frac{q_1}{4\pi\epsilon_0 r}\right)$$

• We define the electric potential from q_1 as:

$$V_{1}(\vec{r}) = \frac{q_{1}}{4\pi\epsilon_{0}r} + K$$

$$= \frac{1}{4\pi\epsilon_{0}} \frac{q_{1}}{\|\vec{r} - \vec{r}_{1}\|} + K$$

$$\vec{E}_{1}(\vec{r}) = -\overrightarrow{\text{grad}} V_{1}(\vec{r})$$

1. Work and electric potential

▶ Using the principle of superposition, we have for an arbitrary charge distribution:

$$\vec{E}(\vec{r}) = -\overrightarrow{\text{grad}} V(\vec{r})$$

with:

$$V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_{i} \frac{q_i}{\|\vec{r} - \vec{r}_i\|} + K \qquad V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \iiint \frac{\rho(\vec{r}')}{\|\vec{r} - \vec{r}'\|} d^3 \vec{r}' + K$$

discrete charge distribution

continuous charge distribution

► Common choices for the constant *K* of the potential:

- Absolute potential, going to zero at infinity:
$$\,V(\infty)=0\,\Longrightarrow\,K=0\,$$

- Potential with respect to the ground:
$$V_{
m ground}=0$$

1. Work and electric potential

- Back to the circulation: $d\mathcal{C} = \vec{E} \cdot \vec{dl} = -\overrightarrow{\mathrm{grad}} \ V \cdot \vec{dl} = -dV$

► Finally, the work to carry a charge *q* reads:

$$W = -q \int\limits_{a\ (\Gamma)}^{b} \vec{E} \cdot \vec{dl} = q \int\limits_{a\ (\Gamma)}^{b} dV = q(V(b) - V(a)) \\ - \sum$$
 The work is independent of the path between a and b

1. Work and electric potential

Electric potential energy of a charge q:

$$E_p = qV$$

$$W = E_p(b) - E_p(a)$$

$$\vec{F}_e = q\vec{E} = -\overrightarrow{\text{grad}} E_p$$

The force is conservative
=
The work is path independent

The force is a gradient of a potential energy

Electric circulation and curl operator

2. Electric circulation and curl operator

Electric field circulation over a loop (closed path), from point a to point a:

$$\int\limits_{a\;(\Gamma)}^{a}\vec{E}\cdot\vec{dl}=-\int\limits_{a\;(\Gamma)}^{a}dV=-(V(a)-V(a))=0$$

Using the notation for a loop integral, the results reads:

$$\oint \vec{E} \cdot \vec{dl} = 0 \qquad \begin{array}{c} \text{The electric field is a} \\ \text{conservative field} \end{array}$$

Valid in electrostatics only

2. Electric circulation and curl operator

Circulation along an infinitesimal loop, a square in Oxy plane for example:

$$d\mathcal{C} = \sum_{i=1}^{4} \vec{E} \cdot \vec{dl}$$

Bottom side: $\vec{E} \cdot \vec{dl} = E_x(x, y, z)dx$ Top side: $\vec{E} \cdot d\vec{l} = -E_x(x, y + dy, z)dx$

Sum of top and bottom:

$$(E_x(x,y,z) - E_x(x,y+dy,z)) dx = -\frac{\partial E_x}{\partial y} dx dy$$
 Sum of left and right:

$$(-E_y(x,y,z) + E_y(x+dx,y,z)) dy = +\frac{\partial E_y}{\partial x} dx dy$$

Total over all 4 sides:

$$d\mathcal{C}_{xy} = \left(\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y}\right) dS = \left(\operatorname{curl} \vec{E}\right)_z dS$$

2. Electric circulation and curl operator

Infinitesimal circulation in Oyz plane:

Infinitesimal circulation in Oxz plane:

The component of the curl along a given axis is the circulation along an infinitesimal loop in the perpendicular plane per unit area

2. Electric circulation and curl operator

To remember:

The circulation of the electric field along any loop is zero:

$$\oint ec{E} \cdot ec{dl} = 0$$
 integral form

curl

which gives for infinitesimal loops: $\left(\operatorname{curl} \vec{E}\right) \cdot \vec{n} \; dS = 0 \qquad \forall \vec{n}$

$$\Longrightarrow \quad \left| \operatorname{curl} \vec{E} = \vec{0} \right| \quad {}^{\text{differential form}}$$

Valid in electrostatics only

Poisson equation

3. Poisson equation

We have seen that the electric field is a gradient of a potential:

$$\vec{E} = -\operatorname{grad} V$$

- Because of the identity: $\operatorname{curl} \left(\operatorname{grad} f\right) = \vec{0} \quad \forall f$ (to verify at home) the electric field automatically satisfies: $\operatorname{curl} \vec{E} = \vec{0}$
- Maxwell-Gauss equation however leads to:

$$\operatorname{div} \vec{E} = \frac{\rho}{\epsilon_0} \implies \operatorname{div} (\operatorname{grad} V) = -\frac{\rho}{\epsilon_0}$$

3. Poisson equation

We have seen that the electric field is a gradient of a potential:

$$\vec{E} = -\operatorname{grad} V$$

- Because of the identity: $\operatorname{curl} \left(\operatorname{grad} f\right) = \vec{0} \quad \forall f$ (to verify at home) the electric field automatically satisfies: $\operatorname{curl} \vec{E} = \vec{0}$
- Maxwell-Gauss equation however leads to:

$$\operatorname{div} \vec{E} = \frac{\rho}{\epsilon_0} \quad \implies \operatorname{div} \left(\operatorname{grad} V \right) = -\frac{\rho}{\epsilon_0}$$

Poisson equation

Summary of electrostatic equations

4. Summary of electrostatic equations

Coulomb's law + superposition

Electric potential equations

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_i q_i \frac{\vec{r} - \vec{r}_i}{\|\vec{r} - \vec{r}_i\|^3}$$

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \iiint \rho(\vec{r}^{\,\prime}) \frac{\vec{r} - \vec{r}^{\,\prime}}{\|\vec{r} - \vec{r}^{\,\prime}\|^3} d^3 \vec{r}^{\,\prime}$$

for electric potential:

$$\vec{V}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_i \frac{q_i}{\|\vec{r} - \vec{r}_i\|} + K$$

$$\vec{V}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \iiint \frac{\rho(\vec{r}^{\,\prime})}{\|\vec{r} - \vec{r}^{\,\prime}\|} d^3\vec{r}^{\,\prime} + K$$

$$\vec{E} = -\operatorname{grad} V$$

$$\operatorname{div} \vec{E} = \frac{\rho}{\epsilon_0}$$

$$\operatorname{curl} \vec{E} = \vec{0}$$

$$\iint \vec{E} \cdot d\vec{S} = \frac{Q_{\text{int}}}{\epsilon_0}$$

$$\oint \vec{E} \cdot d\vec{l} = 0$$

$$\oint \vec{E} \cdot \vec{dl} = 0$$

$$\vec{E} = -\operatorname{grad} V$$
$$\Delta V = -\frac{\rho}{\epsilon_0}$$

Electrostatic energy of a charge distribution

5. Electrostatic energy of a charge distribution

Potential energy of a single charge $\it q$ in an external electric field: $\it E_p=qV$

Definition

The electrostatic energy *U* of a charge distribution is defined as the work required to assemble the system by bringing the charges from infinity.

• bringing single charge
$$q_1$$
 from infinity in empty space: $U_1=0$

$$q_1$$
 bringing q_2 from infinity: $U_{12}=q_2V_1(\vec{r}_2)=rac{q_1q_2}{4\pi\epsilon_0r_{12}}$

assembling N charges from infinity:
$$U = \sum_{\text{all pairs}} \frac{q_i q_j}{4\pi \epsilon_0 r_{ij}} = \frac{1}{2} \sum_i \sum_j \frac{q_i q_j}{4\pi \epsilon_0 r_{ij}}$$

5. Electrostatic energy of a charge distribution

Electrostatic energy of a discrete charge distribution:

$$U = \frac{1}{2} \sum_{i,j} \frac{q_i q_j}{4\pi \epsilon_0 r_{ij}}$$

Electrostatic energy of a continuous charge distribution:

$$U = \frac{1}{2} \iint_{\text{all space}} \frac{dq_1 dq_2}{4\pi\epsilon_0 \|\vec{r}_2 - \vec{r}_1\|} = \frac{1}{2} \iint_{\text{all space}} \frac{\rho(\vec{r}_1)\rho(\vec{r}_2)}{4\pi\epsilon_0 \|\vec{r}_2 - \vec{r}_1\|} d^3\vec{r}_1 d^3\vec{r}_2$$

which can be rewritten in a simpler form:

$$U = \frac{1}{2} \int\limits_{\text{all space}} \rho(\vec{r}_1) V(\vec{r_1}) d^3 \vec{r}_1 \qquad \text{since} \qquad V(\vec{r}_1) = \int\limits_{\text{all space}} \frac{\rho(\vec{r}_2)}{4\pi\epsilon_0 \|\vec{r}_2 - \vec{r}_1\|} d^3 \vec{r}_2$$

5. Electrostatic energy of a charge distribution

Can we know where the electrostatic energy is located in space?

We have
$$\ U=rac{1}{2}\iiint
ho V\ dxdydz$$
 and $\Delta V=rac{\partial^2 V}{\partial x^2}+rac{\partial^2 V}{\partial y^2}+rac{\partial^2 V}{\partial z^2}=-rac{
ho}{\epsilon_0}$

Therefore:
$$U = -\frac{\epsilon_0}{2} \iiint \left(\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} \right) V \, dx dy dz$$

5. Electrostatic energy of a charge distribution

Can we know where the electrostatic energy is located in space?

We have
$$\ U=rac{1}{2}\iiint
ho V\ dxdydz$$
 and $\Delta V=rac{\partial^2 V}{\partial x^2}+rac{\partial^2 V}{\partial y^2}+rac{\partial^2 V}{\partial z^2}=-rac{
ho}{\epsilon_0}$

Therefore:
$$U=-\frac{\epsilon_0}{2}\iiint \left(\frac{\partial^2 V}{\partial x^2}+\frac{\partial^2 V}{\partial y^2}+\frac{\partial^2 V}{\partial z^2}\right)V\;dxdydz$$

Finally, we obtain:
$$U = \iiint rac{\epsilon_0 \| ec E \|^2}{2} d^3 ec r = \iiint u \ d^3 ec r$$

with the electric energy density u: $u = \frac{1}{2} \epsilon_0 \|\vec{E}\|^2$

$$u = \frac{1}{2}\epsilon_0 \|\vec{E}\|^2$$

The energy is localized in space where the electric field is.

Summary

New law/equation for the electric field

$$\oint \vec{E} \cdot \vec{dl} = 0$$

integral form

circulation along infinitesimal loop
$$\vec{E} = \vec{0}$$

differential form

Electric potential

$$\vec{E} = -\operatorname{grad} V$$

$$\Delta V = -\frac{\rho}{\epsilon_0}$$

Poisson equation

Work to carry charge q from a to b

$$\Delta V = -\frac{\rho}{\epsilon} \qquad \qquad W = q[V(b) - V(a)]$$

conservative force path-independent

Potential from single charge q at origin

$$V(\vec{r}) = \frac{q}{4\pi\epsilon_0 r}$$

Electrostatic energy of a charge distribution

$$U = \frac{1}{2} \sum_{i,j} \frac{q_i q_j}{4\pi \epsilon_0 r_{ij}} \qquad U = \frac{1}{2} \iiint \rho V d^3 \vec{r}$$

$$U = \frac{1}{2} \iiint \rho V \, d^3 \vec{r}$$

discrete distribution

$$U = \frac{1}{2} \iiint \rho V \, d^3 \vec{r}$$

continuous distribution

$$U = \iiint u \, d^3 \vec{r}$$
$$u = \frac{1}{2} \epsilon_0 ||\vec{E}||^2$$

energy density