Electrostatics

Gauss’ law, symmetry properties, insulators
and conductors

Feynman Vol. Il Chapters 4-5

Reminder from last lecture
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Coulomb’s law: Fe = 5 €12

Principle of superposition:

Discrete charge distribution
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discrete sum
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Continuous charge distribution
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continuous sum

The force experienced by a charge q at the position 7:
F, = qE(7)




Reminder on cylindrical coordinates (r, 6, 2)
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Reminder on spherical coordinates (1, 6, ¢)
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Field lines

1. Field lines

Representation of the
electric field by vectors

Or by « field lines »,
defined by the requirement
that the line is always
tangent to the field

o qa

E(r)

= e’l”
dmeqr?

(in spherical coordinates,
with charge q at origin)




1. Field lines

A few properties of electric field lines:

e They can’t cross where E is well defined (not singular) and non-zero

* They start at positive charges or infinity

* They end at negative charges or infinity

* They represent the direction of the vector field

e The line density (number of lines per unit perpendicular area) can be
used to represent the magnitude of the field

* No loop in electrostatics

1. Field lines

Field lines for two charges of opposite sign, a configuration called an « electric dipole »




Electric flux and divergence operator

2. Electric flux

We consider a surface S and define the flux ¢ of the electric field over S as follows:

¢ = LE~d§=/[qEndS

with dS dS 7 and 7 a unit vector perpendicular to dS
E, = E - i is the component of E normal to the surface

S

— —

A infinitesimal flux element reads: d¢ = F.-dS




2. Electric flux

Notation for a closed surface: gb = # E - dS
S

Convention for closed surfaces: unit vector is oriented outward. Positive flux means
electric field lines are coming out of the enclosed volume (in average).

6
Flux over an infinitesimal closed surface, a cube for example: dp = Z E-dS
i=1

("/J* Aj /L)

Top surface: E - dS = Ey(z,y + dy, z)dzdz
Bottom surface: E - dS = —Ey(z,y, z)dxdz

| Sum of top and bottom:
’
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2. Electric flux

Analogy with the flow of a fluid (air for exemple), where the velocity v is a vector field:

velocity and unit

field lines fluid throth a mesh vector normal to dS

me, s(f\

The volume of fluid (in blue) passing through the surface dS between t and t+dt is

vdt cos0dS =77 dSdt =T -dS dt = do dt

; The flu?< of v over a surface S is the quiq v.olume
passing through the surface S per unit time.




2. Electric flux

If one considers the flow generated by the vector field E (or any vector field), then:

* the flux over an open surface S measures how much volume is flowing through S

* the flux over a closed surface S measures the net volume flowing out
of the region enclosed by S

> If positive, there is more volume flowing out than flowing in S

(there is a source inside, for example a positive charge)

S

» If negative, there is more volume flowing in than flowing out T s
(there is a sink inside, for example a negative charge) 3

Gauss’ law




3. Gauss’ law

Gauss’ law (1835) states that:

1 ¢ th
# E - dS — (integral form)

total charge
equals inside S divided
by eo

flux of E over
closed surface S

Which reads, for an infinitesimal closed surface element:

= d in
db — div B ay = Wmt _ P gy
€0 €0

Which gives Maxwell-Gauss equation (first Maxwell equation):
. =P
le = — (differential form)
€0

infinitesimal flux equals charge per unit
per unit volume a volume divided by o

3. Gauss’ law

= 2 Qint
In Gauss’ law: # E-dS =
S
The total charge inside (Qint) is either:

Qint — Z qi

charges inside S

(discrete charge distribution)

or: Qint == /// P dV
volume inside S

(continuous charge distribution)




3. Gauss’ law

A few observations and comments on Gauss’ law:
e Gauss’ law can be demonstrated from Coulomb’s law + superposition.

* The reciprocal is not true, unless we add the spherical symmetry of the
point charge (radial field). We’ll see in the next lecture that another law
(integral form) or equation (differential form) is necessary for the equivalence
with Coulomb’s law + superposition.

¢ |n contrast to Coulomb’s law, Gauss’ law is valid even when charges are in
motion and with time-dependent effect (its differential form is one of the
fundamental Maxwell equations).

* Gauss’ law is very powerful when one has some knowledge of the electric
field, using the property of a medium (for the conductor in particular) or
symmetry arguments, but alone is powerless for arbitrary and complex
charge distribution.

Arguments of symmetry in electrostatics




4. Symmetry properties

Applying Gauss’ law usually requires the use of symmetry arguments.

Principle of Curie: « When some causes produce some effects, the symmetries
of the causes must also hold for the effects ».

Translated for electrostatics:

Symmetry of the > Symmetry of the
charge distribution electric field

Symmetry allows to:

* Reduce the number of variables necessary to describe the variations of E in
space.

e (Constrain the orientation of the field

4. Symmetry properties

Important symmetries of a charge distribution:

Invariance by spatial translation Invariance by rotation around
along an axis (0z for example) an axis (0z for example)
plz,y,z+a) = p(x,y,z), VYa p(r,0 +a,z)=p(r,0,z), Va
p(z,y,z) = p(z,y) p(r,0,z) = p(r, 2)

(in cartesian coordinates) (in cylindrical coordinates)
Mirror symmetry Mirror antisymmetry
p(M") = p(M) with M' = symp M p(M') = —p(M) with M" = symp. M
Cylindrical symmetry Spherical symmetry
p(r,0,z) = p(r) p(r,0,¢) = p(r)
(in cylindrical coordinates) (in spherical coordinates)

Reduction in number of variables translates directly to the electric field
Example in spherical symmetry:  p(r,0, ) = p(r) — E(r,0,¢) = E(r)




4. Symmetry properties

Mirror symmetry and electric field orientation
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Mirror symmetry implies: E||(M) = E||(M’) and E, (M) =—E (M)
IfMeP, E (M)=—-E, (M =M)=0
— For a point inside P, the electric field is within the plane of symmetry

4. Symmetry properties

Mirror antisymmetry and electric field orientation
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Mirror antisymmetry implies: E||(M) = —E||(M/) and E, (M) =E, (M)
It M € P*, Ej(M)=—-Ej(M' =M)=0

—) For a point inside P*, the electric field is perpendicular to the plane of antisymmetry




4. Symmetry properties

Example: application to cylindrical symmetry

* Invariance by rotation around 0Oz and by
translation along 0z: E(M) = E(r)

* The plane P1 containing Oz and M is a plane of
symmetry, therefore: E(M) € P = (M, )

* The plane P2 parallel to Oxy and containing M
is a plane of symmetry:
P YMMEY: By e By = (M, 2,,6))

—

* We can conclude: E(M)e PNP,=(M,e,)

* The result reads: E(M) = E(r)é,
radial field
| SY e/ mk : . .
2 _ﬁ\ A N}( > In tutorial #2- detfgrlrgl?e thehfor.m Iof the electric
b |€(ﬂ/9/ z} - > ield for spherical symmetry

Insulators and conductors




5. Insulators and conductors
Matter can be roughly classified in two broad categories:

Insulators Conductors
(glass, plastics, etc.) (metals, electrolytes, human body, etc.)

A conductor is a body in which a large

Electrons are strongly bound to the
number of charges can move freely

atoms. Charge transfer not favorable
in metals: ~1030 free electrons/m3

Many insulators can be modeled as « dielectric » media.

» Electrons stay in the vicinity of the
corresponding atom or molecule

- O - - L+ - » In an external electric field, they are
- - slightly shifted from their equilibrium
- - position: a dipole configuration arises
E\/ = \ﬁ » Phenomena called « dielectric
E +3 polarization »

5. Insulators and conductors

Homogenous, isotropic and linear dielectric:

€0 r——— € = €r€0 Modeling of dielectrics: beyond
the scope of the course and
vacuum permittivity dielectric permittivity not required for exams

(er is called the relative permittivity)

Gauss’ law
Examples
Fodb — Qint  Qint
g € €r€0

1.00059

3.85

Maxwell-Gauss equation 47
.~ P p 7
divE="5=-" .

€ €€




5. Insulators and conductors

Homogenous, isotropic and linear dielectrics equivalent to vacuum, but with
higher permittivity and smaller generated electric field
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In vacuum In dielectrics
dipoles appear with a contribution opposite to the
field of the charge, reducing the total electric field
- Electric field from charge q in dielectrics
= electric field from charge q/er in vacuum

5. Insulators and conductors

Metallic conductors at equilibrium:
Free electrons are at rest (average velocity is zero with respect to metal)

As long as there is an electric field in the metal, electrons are accelerated and
therefore in motion

They can only be at rest if the total electric field is zero

> Free electrons move and rearrange themselves until they produce an electric
field that cancels the external electric field, thus reaching an equilibrium state

—

E=0 everywhere inside a conductor at equilibrium




5. Insulators and conductors

Gauss’ law in the conductor:

#E’ e :Qint:O
S €0

—_— Qi =0 VS

or, more simply, Maxwell-Gauss equation: é AU DO / To R
divE="2 =0
€0

p = 0 everywhere inside a conductor at equilibrium

All charge in a conductor at equilibrium must be
distributed along its surface.

—

5. Insulators and conductors

Positively-charged conductor at equilibrium
+ v

Near the surface:

Free electrons are at rest: the electric field
is normal to the surface, otherwise
electrons would move along the surface

E(F) = E(f) &t

Gauss’ law over arbitrarily-small cylindrical
closed surface around M:

# E-dS=EBA= Qiny _ (M)A
5 €0 €0
> () = o(7) N (outside, near surface) - %
€0 ™~ )
‘ ‘?9 sunlacec
E(F) = 6 (inside) E (%) SA A




5. Insulators and conductors

Conductor in an external electric field
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5. Insulators and conductors

Conductor in an external electric field
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Electrons in the conductor
rearrange themselves until
~7 the total field inside is zero:

”/77 - Etotal = Ec + Eext = 6

2\ \ //er
||

4 || » the Van de Graaff thus induces a dipole in the
\ ‘\ conductor: the conductor becomes polarized

> Negative charge closer to Van de Graaff: stronger
‘ |

| Coulomb force on - charge than on + charge: the total
“ | force is attractive.

0/ » If it touches: the conductor becomes charged with
/ (- . .

\\; O\\@ 6 raal | same sign as Van de Graaff, and is therefore strongly

VYA - /f‘ repelled




Summary

Flux: ¢ = // E-dS  anddivergence: div E = OF, + OF, + OF;
S ox oy 0z

flux over infinitesimal closed
surface per unit enclosed volume

measures flow through S

Gauss’ law Maxwell-Gauss equation
= 2 int . P
E-dS:an leE:—
S €0 €0
integral form differential form

Symmetries: reduce number of variables and constrain vector orientation

Dielectrics Conductors at equilibrium
€) =————)p € = €€ :2: 0 E — E mn all charge on
E=0 €0 the surface
due to polarization

inside outside, near the surface




