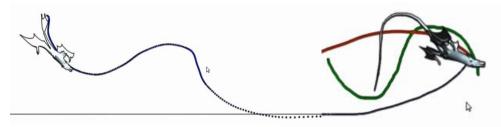
Evaluation part 1 Papers reading & comparison

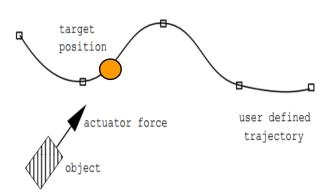

Will take place week 4: October 16th

- By groups of 3 students
- Read 2 research papers and **compare them**
- Either
 - 2 successive advances
 - -2 alternative solutions to the same problem
- **In your 10 mn talk** (10 slides max include short videos)
- Explain what they solve: input and output
- Identify contributions from each paper: novel, re-usable ideas
- Discuss the pro and the cons of each method

Email me to with student names + chosen group of papers

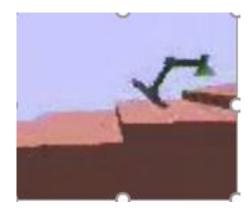
1. Expressive design of kinematic animations

• **Space-time sketching of character animation**. Martin Guay, Rémi Ronfard, Michale Gleicher, Marie-Paule Cani. SIGGRAPH 2015


• SketchiMo: sketch-based motion editing for articulated characters. Choi, Blanco i Ribera, Lewis, Seol, Seokpyo, Eom, Jung, Noh. SIGGRAPH 2016

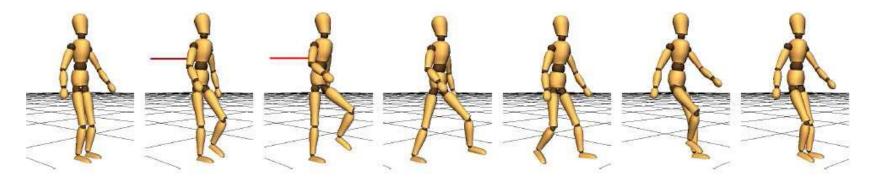
2. Early ways to combine physics with motion control

Spacetime constraints. Andrew Witkin and Michael Kass.
 SIGGRAPH 1988


• Scripting interactive physically-based motions. Lamouret, Cani. Graphics Interface 1995.

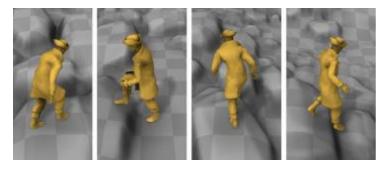
3. Pioneer uses of neural networks & genetic algorithms for learning motion control

- Sensor actuator networks.
 Michiel Van de Panne, Eugene Fiume. SIGGRAPH 1993.
- Evolving virtual creatures. Karl Sims. SIGGRAPH 1994



4. First controllers for humanoids: Manual controller design & optimization

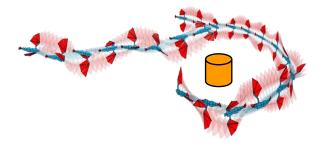
- Animating human athletics. Jessica K. Hodgins, Wayne L. Wooten, David C. Brogan, James F. O'Brien. SIGGRAPH '95
- SIMBICON: Simple Biped Locomotion Control. KangKang Yin, Kevin Loken, Michiel van de Panne. University of British Columbia, SIGGRAPH 2007.


5. How far should we use anatomy? Muscle-based motion control

- Flexible Muscle-Based Locomotion for Bipedal Creatures Thomas Geijtenbeek Utrecht University, Michiel van de Panne Frank van der Stappen, Siggraph Asia 2013
- Scalable Muscle-Actuated Human Simulation and Control Seunghwan Lee Moonseok Park Kyoungmin Lee Jehee Lee, SIGGRAPH 2019

6. Deep learning for motion control

• Phase-functioned neural networks for character control. Holden, Komura, Saito. Univ Edinburg, UK. SIGGRAPH 2017.



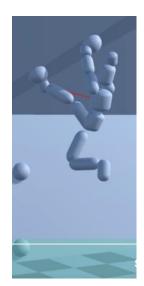
• Mode-Adaptive Neural Networks for Quadruped Motion Control. Zhang, Starke, Komura, Saito. SIGGRAPH 2018

7. Learning how to fly

• How to train your dragon: Example-guided control of flapping flight. Won, Park, Kim, Lee, Siggraph Asia 2017.

 Learning to Fly: Computational Controller Design for Hybrid UAVs with Reinforcement Learning Jie Xu, Tao Du, Michael Foshey, Beichen Li, Bo Zhu, Adriana Schulz, Wojciech Matusik, Siggraph 2019.

8. Should we learn by imitation or discover new motion?


- DeepMimic : Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills. Peng, Abbeel, Levine, van de Panne. SIGGRAPH 2018.
- Learning Symmetry and Low-energy Locomotion. Yu, Turk, Liu. SIGGRAPH 2018

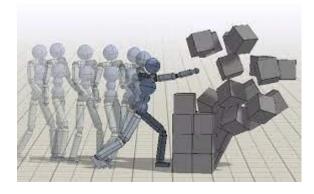
9. Acquiring sport skills

- Discovering and synthesizing humanoid climbing movements. Naderi, Rajamäki, Hämäläinen. SIGGRAPH 2017
- Learning Basketball Dribbling Skills Using Trajectory Optimization and Deep Reinforcement Learning. Liu, Hodgins. SIGGRAPH 2018

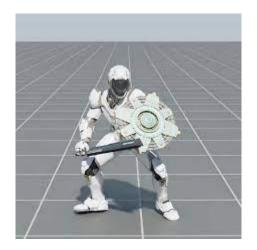
10. Handling interactions with the scene

• Neural state machine for character-scene interactions. Sebastian Starke, He Zhang, Taku Komura, and Jun Saito. ACM TOG 38, 6

(2019)

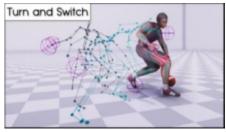


• Synthesizing Physical Character-Scene Interactions Hassan, Guo, Wang, lack, Fidler, Peng. SIGGRAPH 2023



11. Learning style & combining motions? Deep RL + Adversarial networks

 AMP: Adversarial Motion Priors for Stylized Physics-Based Character Control Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. SIGGRAPH 2021


 CALM: Conditional Adversarial Latent Models for Directable Virtual Characters.
 Chen Tessler, Yoni Kasten, Yunrong Guo, Shie Mannor, Gal Chechik, Xue Bin Peng ACM SIGGRAPH 2023.

111

More papers...

- Synthesis of Biologically Realistic Human Motion Using Joint Torque Actuation Yifeng Jiang, Tom Van Wouwe, Friedl De Groote, Karen Liu, SIGGRAPH 2019
- Local Motion Phases for Learning Multi-Contact Character Movements Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Zaman. ACM Trans on Graph 39, 4 (SIGGRAPH 2020)
- ASE: Large-Scale Reusable Adversarial Skill Embeddings for Physically Simulated Characters Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, Sanja Fidler. SIGGRAPH 2022
- **Deep compliant motion control**. Lee, Chang, Lee. SIGGRAPH 2022
- Learning Virtual Chimeras by Dvnamic Motion Reassembly.
 Seyoung Lee, Jiye Lee, Jehee Lee

