

Advanced 3D Graphics ... where Computer Graphics meets AI

Marie-Paule Cani

GeoViC team, LIX/DIX Ecole Polytechnique

Advanced 3D Graphics Focus : where Computer Graphics meets AI

Part 1. "Creative AI" – Intelligent systems helping users in creative tasks

- 1. Expressive 3D modeling : smart geometry controlled by gestures
 - Shape representations for constructive modeling
 - Sculpting, sketching, transfer metaphors
- 2. Extension to virtual worlds
 - Modeling and animating natural scenes
 - Expressive creation & control of animated scenes

Part 2. Autonomous characters – animation & control

- 3. Motion planning for characters and crowds
- 4. Animating and controlling individual characters

3D Computer Graphics See and touch imaginary worlds?

@Grenoble-INP avec Lyon 1, Inria

- Design, refine and fabricate imaginary 3D shapes
- Give life and explore animated virtual worlds...

Playful dimension... and a wonderful tool!

How can we help the user create them?

Digital creation in 3D Computer Graphics

Not "image processing", not "imaging" – Input: mathematical models... Output: images!

3 steps

- 1. Geometric modeling
- 2. Animation
- 3. Rendering

Advanced 3D Graphics Focus : where Computer Graphics meets AI

Part 1. "Creative AI" – Intelligent systems helping users in creative tasks

- 1. Expressive 3D modeling : smart geometry controlled by gestures
 - Section 1: Shape representations for constructive modeling
 - Section 2: Sculpting, sketching, & transfer metaphors
- 2. Extension to virtual worlds
 - Modeling and animating natural scenes
 - Expressive creation & control of animated scenes

Part 2. Autonomous characters – animation & control

- 3. Motion planning for characters and crowds
- 4. Animating and controlling individual characters

Part 1, Chapter 1: Expressive modeling Section 1: Shape representations

Objectives

- Creating new shapes (no reconstruction)
- User control (no automatic generation)
 - \rightarrow Interactive 3D modeling

In this section

- Notion of « constructive modeling »
- Reminder on different shape representations
- Recent advances in **implicit modeling**

✓ Constructive modeling

✓ Choice of a representation
 ✓ Zoom : implicit surfaces

3D Shapes : a few definitions

Shape : Geometric Structure in a 3D space

- 1D (curve), 2D (surface), 3D (volume)
- Any combination of the above!

Free form shape : arbitrary geometry and topological genus *Smooth* shape:

- C^1 : tangent continuity
- C^2 : curvature continuity

3D shapes: Volume vs. Border Representation (B-Rep)

3D shapes

Machines view-point

- Mathematical model
 - Enumerated (list of faces)
 - Equation to compute them
- Rendering : projection of faces

/ Human view-point

[*M. Leyton – cognitive sciences*]

- Shape = assembly of parts
- Part = deformation of a symmetrical « primitive shape »

[A generative theory of shapes. M. Leyton, Springer]

3D shapes

Machines view-point / Human view-point

- Mathematical model
 - Enumerated (list of faces)
 - Equation to compute them
- → Specify degrees of freedom
 - Give the list of faces
 - or parameter values

Wins in the end!

- Shape = assembly of parts
- Part = deformation of a symmetrical « primitive shape »
- → « constructive » modeling
 - = series of operations :
 - Create
 - Deform
 - Assemble

Source of misunderstanding!

✓ Constructive modeling

✓ Choice of a representation✓ Zoom : implicit surfaces

Constructive modeling The needs

- 1. Being able to create free form shapes
- 2. Remaining in the space of « valid shapes »
 - No Klein bottle
 - Avoid self-intersections
- 3. Progressive modeling and refinement
- 4. Real-time display
 - Whatever the duration of the modeling session

\rightarrow Choice of an adapted representation ?

Discrete Representations

Enumerations

- points 0D, segments 1D
- faces 2D (meshes if connectivity info)
- voxels 3D : volumes

Non-smooth representations

- Well suited to automatic creation
- Not adapted to manual creation

Algorithmic representations

Discrete representation + automatic smoothing

- Voxels : Interpolate a scalar density in a grid
 - Display the 0.5 iso-surface
- *Mesh* : Subdivision surfaces
 - Difficulty : controlling the limit shape

Recursively « cut corners »

Continuous representations

Shape (curve, surface, volume) defined by an equation

• Parametric vs implicit formulation

Exemple : Sphere of radius r Parametric surface S(u,v) = (r Sin(u)Cos(v), r Sin(u)Sin(v), r Cos(u)) $u \in [0,\pi], v \in [0, 2\pi]$ Implicit surface $I = \{P \in \mathbb{R}^3 / x^2 + y^2 + z^2 = r^2\}$ Implicit volume $V = \{P \in \mathbb{R}^3 / x^2 + y^2 + z^2 \le r^2\}$

Constructive Modeling Choice of representation ?

Advantages of continuous representations

- Less parameters to define (ex sphere : radius, center)
- A smooth shape remains smooth at any scale

- can be converted into different discrete representations

Ex: Parametric surface $S(u, v) = (S_x(u, v), S_y(u, v), S_z(u, v))$

- Compute a grid of sample points
- Triangulate it (planar faces)

Constructive Modeling Choosing a representation ?

Constructive modeling loop

- 1. Create primitive shapes
- 2. Deform should be intuitive, local or global
- 3. Assemble Seamless if possible

Can this be done with parametric surfaces ?

Parametric modeling Spline curves

Creation

- List of « control points » P_i
- To be interpolated or approximated : $C(u) = \sum F_i(u) P_i$

Deformation

- Need for local control!
- F_i low degree polynomials (degree 3), compact support

Assembly

• C¹ or C² at joints

Interpolation curve "Cardinal Spline"

\mathbf{C}^1 at joints

$$C_{i}(0) = P_{i}$$

$$C_{i}(1) = P_{i+1}$$

$$C'_{i}(0) = k (P_{i+1} - P_{i-1})$$

$$C'_{i}(1) = k (P_{i+2} - P_{i})$$

$C_i(u) = \sum F_i(u) P_i$

Single solution with $F_i(u)$ of degree 3

- Local control of order 4
- F_i(u) not always positive C(u) goes outside of the convex hull

Approximation curve Uniform cubic Bspline

C² continuity with F_i local, of d°3 ?

Curve segment defined by:

- F_i built from 4 d°3 polynomials
- Local control of order 4
 F_i continuously vanishes outside support
- Convex hull
- Regularizing curve

 $C_{i}(u) = \sum F_{i}(u) P_{i}$ For all u, $F_{i}(u) \ge 0$, $\sum F_{i}(u) = 1$

Parametric Modeling Spline surface

- Product of spline curves in u and v $S_{i,j}(u, v) = \sum F_i(u) F_j(v) P_{ij}$
- Need of a *grid* of control points
- How can we create complex shapes?

Parametric modeling Spline surfaces: Creation

- Surfaces of revolution
 - Rotate a planar curve around an axis
- Extrusion
 - A skeleton curve
 - A section swept along the skeleton
 - A profile curve giving the scaling factor

Parametric modeling Spline surfaces: Deformation

- Local deformation
 - Move control points
- Global deformation?

Use a « space deformation » $T: \mathbb{R}^3 \to \mathbb{R}^3$ Control points move The surface deforms

(See part on « sculpture »)

Parametric modeling Spline surface: Assembly

- Along borders... OK
 - Same number of patches needed
 - 3 common rows of control points
- Handles, branchings? Very difficult!

@Université de l'Utah, 1982

Parametric surfaces Limitations

- B-Rep only
 - No constraint against incorrect shapes
 - (eg. Klein bottle...)
- Hard to model
 - Arbitrary topological genus
 - Smooth branchings

Continuous representations Implicit surfaces

 $I = \{ P / f(P) = c \} \qquad f : \mathbb{R}^3 \to \mathbb{R} \text{ scalar field}$

(ex sphere : $f(P) = x^2 + y^2 + z^2$, $c = r^2$)

Hyp: I separates space into two parts - one of finite size

- Inside volume f(P) > c
- Surface normal $N = \nabla f$
- *f* et *I* have the same degree of continuity!
- Difficult to list surface points...
 but « inside / outside» test (f(P) > c ?)

Implicit surfaces Sampling for display

- « Marching cubes » method [Lorensen 1991]
 - Inside/outside classification of grid points: $f(P) \ge c \rightarrow black$
 - Extract cubes that cut the surface
 - Triangulate their intersection with the surface

Constructive modeling Choosing a representation?

Constructive modeling loop

- 1. Create simple shapes
- 2. Deform them should be intuitive
- 3. Assemble them seamlessly if possible

Attempt with implicit surfaces ?

Implicit surfaces Assembling

Given $I_1 = \{ P / f_1(P) = c \}, I_2 = \{ P / f_2(P) = c \}$ f_1 and f_2 of class at least C¹

Assembling : compute $I = \{ P / f(P) = c \}$

- $f = max(f_1, f_2) \rightarrow$ **Union**
- $f = min(f_1, f_2) \rightarrow$ Intersection
- $f = f_1 + f_2 \rightarrow \ll$ **Blending** »

Preserves the degree of continuity!

Implicit surfaces **Creation** ?

• Use of an equation quite limited... Spheres : $f(P) = x^2 + y^2 + z^2 = r^2$

Super-ellipsoïds : $f(P) = \frac{x^n}{a^n} + \frac{y^n}{b^n} + \frac{z^n}{c^n} = 1$

- Solution : skeleton-based implicit surfaces
- f_i : decreasing function of $d(P, S_i) \rightarrow density of matter around S_i$

^{ion} Skeleton-based implicit surfaces Convolution surfaces [Bloomethal 91]

- Skeleton made of several segments Bulge at joints !
- Convolution surface

$$f_i(P) = \int_S r(s) K(d(P,S)) ds$$

Implicit surface Deform?

- Local deformation
 - Deform skeletons
 - Edit thickness

- Global deformation
 - Space deformation $T: \mathbb{R}^3 \to \mathbb{R}^3$

 $\widehat{f}(P) = f(T^{\text{-}1}(P))$

Constructive implicit modeling Construction trees

'BlobTrees' extending CSG trees

- Assembling nodes: +, -, max, min, ...
- Unary nodes for deformation
- Leaves = Skeleton-based implicit primitives

Recent research on implicit surfaces

Challenging unsolved problems until 2010

- 1. Small details vanish : "blobby" shapes
- 2. Non-local blends, that start at a distance \rightarrow shapes and animations hard to control !

Problem 1 Small details vanish

(S)

Reference

space

Problem 1 Small details vanish

s Problem 2 Which blending would we like?

- ✓ Constructive modeling
 ✓ Choice of a representation
- ✓ Zoom : implicit surfaces

Ces Problem 2 Blending at distance : Garment folds

If compression

- Fold skeletons
- Implicit surfaces
- Deform cloth mesh

Input Simulation

[Rohmer 2010]

Problem 2 Blending upon contact

Constructive modeling

Animated water droplets Before After

Solution: Gradient-based blends

 $f = f_{1} + f_2$ blending at distance **Idea:** blending should depend on field values *and gradients*

Desired behavior

- Blend where gradients are orthogonal
- Union if aligned or opposed

Method: $f = g(f_1, f_2, \nabla f_1, \nabla f_2)$

g interpolates between union and blending

+ Gradient blend

Solution: Gradient-based blends

Solution [Gourmel 2013]

- Blending operator with a blending angle Θ
- Θ function of angle between gradients

+

Gradient blend

Directional blending

[Zanni 2015]

Separating shapes instead of assembly? Implicit untangling [Buffet 2019]

Conclusion

Continuous shape representations for Constructive modeling

- Spline surfaces good for 2D shapes
- 3D shapes easier with implicit surfaces

✓ Intuitive control using skeletons

✓ Precise blending control is mandatory

Jweel @Skimlab

References

- Leyton (2001). A generative theory of shape (Vol. 2145). Springer Science & Business Media.
- Beatty & Barsky (1987). An introduction to splines for use in computer graphics and geometric modeling. Morgan Kaufmann.
- Loop & DeRose (1990). Generalized b-spline surfaces of arbitrary topology. ACM Computer Graphics, Siggraph.
- Lorensen & Cline (1987). Marching cubes: A high resolution 3D surface construction algorithm. ACM Computer Graphics, Siggraph.
- Bloomenthal (1997) Introduction to Implicit Surfaces, Morgan Kaufmann.
- Wyvill, Guy, Galin (1999). Extending the CSG Tree Warping, Blending and Boolean Operations in an Implicit Surface Modeling System. Comput. Graph. Forum 18(2).
- Zanni, Bernhardt, Quiblier, Cani (2013). SCALe-invariant Integral Surfaces Computer Graphics Forum, Wiley-Blackwell, 32 (8).
- Rohmer, Popa, Cani, Hahmann, Sheffer (2010). Animation Wrinkling: Augmenting Coarse Cloth Simulations with Realistic-Looking Wrinkles. ACM Transactions on Graphics, 29 (5).
- Gourmel, Barthe, Cani, Wyvill, Bernhardt, Paulin, Grasberger (2013). A Gradient-Based Implicit Blend. ACM Transactions on Graphics, 32 (2).
- Zanni, Cani, Gleicher (2014). N-ary implicit blends with topology control. Computers and Graphics (proceedings of Shape Modeling International), Elsevier.
- Buffet, Rohmer, Barthe, Cani, Implicit untangling, ACM Transactions on Greaphics, Siggraph 2019.