# Lecture 9 Electrical grid & electrical energy storage

PHY 555 – Energy & Environment Erik Johnson, Mathieu de Naurois, Daniel Suchet



# Today's menu – in and out the grid



## An electric future?



Futurs énergétiques 2050

"The study concludes, without any ambiguity, that a sustained development of electric renewable energies in France is essential to meet its climate commitments."

## Renewable growth

Global Wind Power Cumulative Capacity (Data: GWEC)

Year



Note : hydro & biomass are also renewable, and produce much more, but behave like conventional sources

Global Solar Power Capactiy BP (2015) & IEA-PVPS (2019)



4

### Zoom out



### Zoom out again Mtoe World total final energy consumption 12 000 International Energy Agency 10 000 Electricity 8000 **Biofuels and waste** 6000 Natural gas 4000 Oil 2000 Coal

1995

2000

2005

2010

2015

0

1975

1980

1985

1990

6

# Integrating renewables

### Joule

**Cell**Press

#### Article

### 100% Clean and Renewable Wind, Water, and Sunlight All-Sector Energy Roadmaps for 139

Countries of the World Mark Z. Jacobson, Mark A. Delucchi, Zack A.F. Bauer, .. Jingfan Wang, Eric Weiner, Alexander S. Yachanin



Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems

B.P. Heard<sup>a,\*</sup>, B.W. Brook<sup>b</sup>, T.M.L. Wigley<sup>a,c</sup>, C.J.A. Bradshaw<sup>d</sup>



Renewable and Sustainable Energy Reviews Volume 92, September 2018, Pages 834-847



(CrossMark

Response to 'Burden of proof: A comprehensive review of the feasibility of 100% renewableelectricity systems'

T.W. Brown <sup>a, b</sup> 🛛 🖾, T. Bischof-Niemz <sup>c</sup>, K. Blok <sup>d</sup>, C. Breyer <sup>e</sup>, H. Lund <sup>f</sup>, B.V. Mathiesen <sup>g</sup>

While social and political barriers exist, converting to 100% WWS using existing technologies is technically and economically feasible

Evaluated against these objective criteria, none of the 24 studies provides convincing evidence that these basic feasibility criteria can be met.

Based on a literature review we show that none of the issues raised in the article are critical for feasibility or viability.



### Where do we stand



Source: IEA (2019a), Status of Power System Transformation 2019: Power System Flexibility.





2022: 32 GW of wind and solar

Up to 50 GW : current infrastructures ok

Above 50 GW : structural changes required

Lecture 9 Electrical grid & electrical energy storage

I. The many time scales of grid stability Introduction to the electrical grid Time scales of grid stability Challenges raised by wind and solar integration

II. Power to X

III. Battery & electrical mobility

IV. Hydrogen



# Welcome to the grid



### Wide area synchronous grid





European grid: 36 countries 480 000 km 1100 GW

# What is the grid?





Cuffe, Paul; Keane, Andrew (2017). "Visualizing the Electrical Structure of Power Systems". IEEE Systems Journal. 11 (3)

# Why is the grid?

• Not just an electron highway

Even if it's pretty impressive...

1.500.000 km de liaisons en France

- •100.000 km de réseau de transport (63kV à 400kV, RTE)
- •1.400.000 km de réseau distribution (220V à 20kV, Enediset autres)

### • Mutualize resources

Household max power (EDF contract) : 3, 6 or 9 kW Peak consumption : 1,5 kW/pers.

• Ensures power balance at all times





### % of capacity kept for primary reserve



## Power and frequency

Why use a 50/60Hz AC system ? *AC allows tranformers Too slow : flickering Too fast : mechanical constraints* 

Why frequency should be kept steady ? Power applications depend on frequency

How come frequency monitors the system's state ? Energy conservation : power imbalance <-> frequency change





## When everything goes wrong : a case study

"The sequence of events was triggered by a trip of [a transmission line with Switzerland] at 03:01, caused by a tree flashover. [...].

Other lines had taken over the load of the tripped line, as is always the case in similar situations. Due to its proximity, the other Swiss 380 kV line. was overloaded.

This overload was acceptable in such emergency circumstances, according to operational standards, only for a short period [of 15 minutes].

At 03:25, this second line also tripped after a tree flashover. This flashover was probably caused by the sag in the line, due to overheating of the conductors.

Having lost two important lines, the then created overloads on the remaining lines in the area became intolerable. By an almost simultaneous and automatic trip of the remaining interconnectors towards Italy, the Italian system was isolated from the European network about 12 seconds after the loss of the second line. [...]

[Despite all mitigation actions], the frequency continued to decrease and the system collapsed 2 minutes and 30 seconds after the separation of the country, when the frequency reached the threshold of 47,5 Hz."



Switzerland

380 kV

# When everything goes wrong : a case study



Lecture 9 – Grid and storage

- The many time scales of grid stability
  - Introduction to the electrical grid
  - Time scales of grid stability
  - Challenges raised by wind and solar integration
- Power to X
- Battery & electrical mobility
- Hydrogen









6 mHz/s when losing a 1300MW power plant on the European grid

Temps (secondes)

60

40

48,8

0

20

With 150 GW of

sychronous production

With 90 GW of

sychronous

production

100

80





Wind: AC at variable frequency (tip speed ratio)



Wind and solar provide asynchronous productions and do not contribute to the system's inertia

Grid forming inverters (power electronics)



Use generators as synchronous condensers





Keep (or store) a bit of power to react when frequency shifts

First flywheel + synchronous generator installed in Ireland (Siemens, 2021)



Intermittency : Rapid & abrupt variations of production

D. Suchet et al, Energies (2020).

Probability density function for  $P(t + \tau) - P(t)$ 



Consider the 1-second variation 20 fluctuations occur :

Gaussian : once every 3 millions years Wind: once a month PV : 1000 times a month



Hour to hour, day to day, season to season, year to year





Primary reserve Frequency Containment Reserve (FCR)

Secondary reserve Auto. Frequency Restoration Reserve (a-FFR)

- Within 30 seconds, continues for up to 15 minutes.
- Automatic
- In Europe, FCR is aggregated among all countries, and calculated to handle the loss any two power plants (~ 3 GW).
- Open to markets, based on weekly calls.
- within the first 10 minutes
- In Europe, a-FRR is specific to each country.
  - In France, a-FFR = 500 MW to 1200 MW any producer with a capacity >120 MW must contribute
- 30 or 60 minutes













### Up to long term previsions !









More uncertainty  $\rightarrow$  need more reserve to handle unexpected situations







Operation and maintenance

#### Development (demography, additionnal usages, behaviors, regulations...)





# Timescale**s**



Lecture 9 Electrical grid & electrical energy storage

I. The many time scales of grid stability Introduction to the electrical grid Time scales of grid stability Challenges raised by wind and solar integration

II. Power to X

III. Battery & electrical mobility

IV. Hydrogen



# Storage technologies

General idea:

Stock power when overproducing Tap storage when underproducing

Remember !

Many time scales





Power

Time (hours)

### Power to X

How to store electricity when production is large and consumption is low in prevision for low production, large consumption periods?

Can we use the (excess of) electricity production for other applications?

Basic indicators :

Efficiencyenergy out / energy inSelf discharge / storage durationHow long can energy remain stored?Lifetime / number of cyclesHow long can the storage be used?Storage capacity : Wh/kg or Wh/m³How much energy can be stored ?Power rating : W/kg or W/m³How much power can the device handle?



## Power to power



# Power to mobility



## Power to chemicals


#### Power to gas



# Which storage for which application?





### Storage technologies



|                             | Power rating<br>(MW) | Storage<br>duration (h) | Cycling or<br>lifetime | Self<br>discharge <sup>8</sup><br>Per day | Energy<br>density (Wh/l) | Power density<br>(W/I) | Efficiency | Response<br>time |
|-----------------------------|----------------------|-------------------------|------------------------|-------------------------------------------|--------------------------|------------------------|------------|------------------|
| PHS <sup>1</sup>            | 100 - 1,000          | 4 - 12h                 | 30 - 60 years          | ~0                                        | 0.2 - 2                  | 0.1 - 0.2              | 70-85%     | Sec - Min        |
| CAES <sup>2</sup>           | 10 - 1,000           | 2 - 30h                 | 20 - 40 years          | ~0                                        | 2 - 6                    | 0.2 - 0.6              | 40-75%     | Sec - Min        |
| Flywheels                   | 0.001 - 1            | Sec - hours             | 20,000 - 100,000       | 1.3 -100 %                                | 20 - 80                  | 5,000                  | 70-95%     | < sec            |
| NaS battery <sup>3</sup>    | 10 - 100             | 1 min - 8h              | 2,500 - 4,500          | 0.05 - 20%                                | 150 - 300                | 120 - 160              | 70-90%     | < sec            |
| Li-ion battery <sup>4</sup> | 0.1 - 20             | 1 min - 8h              | 1,000 - 10,000         | 0.1 - 0.3%                                | 200 - 400                | 1,300 - 10,000         | 85-98%     | < sec            |
| Flow battery⁵               | 0.1 - 100            | 1 - 0h                  | 12,000 - 14,000        | 0.2%                                      | 20 - 70                  | 0.5 - 2                | 60-85%     | < sec            |
| Supercapacitor              | 0.01 - 1             | Ms - min                | 10,000- 100,000        | 20 - 40%                                  | 10 - 20                  | 40,000 - 120,000       | 80-98%     | < sec            |
| SMES <sup>6</sup>           | 0.1 - 1              | Ms - sec                | 100,000                | 10 - 15%                                  | ~6                       | ~2,600                 | 80-95%     | < sec            |
| Molten salt                 | 1 - 150              | Hours                   | 30 years               | n/a                                       | 70 - 210                 | n/a                    | 80-90%     | Min              |
| Hydrogen                    | 0.01 - 1,000         | Min - weeks             | 5 - 30 years           | 0 - 4%                                    | 600 (200 bar)            | 0.2 - 20               | 25-45%     | Sec - Min        |
| SNG <sup>7</sup>            | 50 - 1,000           | hours-weeks             | 30 years               | negligible                                | 1,800 (200 bar)          | 0.2 - 2                | 25-50%     | Sec - Min        |

2013 SBC Energy Institute

### Installed capacities (2023)



#### Pump hydro storage

Over production : Pump water up

Under production : Turbine water down

Excellent efficiency (70-90%)

Low energy density (g h < 10 kJ/kg)

Large volume and power (Grandmaison : 300 GWh, 2GW)

Potential limited by available sites

France :

Installed capacity = 5 GW Additionnal potential = 1-1,5 GW (ADEME)





See PC 9

#### Beacon power system

#### 44

#### Storing energy as rotation speed

Flywheel

$$E_C = \frac{1}{2}J\omega^2$$
  $J_{\text{cylinder}} = \frac{1}{2}mr^2$ 

#### Hazle Township, Pennsylvania

200 flywheels, 20 MW for frequency regulation









See PC 9

### Compressed air

Adiabatic:  $T \sim T_0 \times r^{\frac{\gamma-1}{\gamma}}$ 

Isothermal:  $W^{\text{isothermal}} = V\left(p_H \ln \frac{p_H}{p_0} - p_L \ln \frac{p_L}{p_0} - (p_H - p_L)\right)$ 

Couple with thermal storage





|          | Huntdorf, Germany      | McIntosh, USA          |
|----------|------------------------|------------------------|
| Pressure | 45 to 70 bar           | 45 to 76 bar           |
| Volume   | 310 000 m <sup>3</sup> | 560 000 m <sup>3</sup> |
| Power    | 290 MW                 | 110 MW                 |
| Energy   | 1160 MWh (=4h)         | 2640 MWh (=24h)        |



ΔN

Lecture 9 Electrical grid & electrical energy storage

I. The many time scales of grid stability Introduction to the electrical grid Time scales of grid stability Challenges raised by wind and solar integration

II. Power to X

**III. Battery & electrical mobility** 

IV. Hydrogen



#### Batteries – driving force

"usual" chemical reaction

Spontaneous evolution:

 $\Delta_r G < 0$ 

Battery: same reaction

ionic species can move through the electrolyte but electrons have to go through an external circuit

#### Electron / ion duality

If electrons can't flow (e.g. open circuit), the chemical reaction stops

If ions can't flow (e.g. contact issues...) the electronic current stops В

Electrolyte Electrolyte







Α



#### Batteries – Open circuit

Open circuit situation: no transport  $\rightarrow$  independent of electrolyte

Open circuit voltage

 $U = -\frac{\Delta_r G}{zN_A e} \qquad {\rm N_A~e=96~500~C/mol=Faraday's~constant}$ 

maximum theoretical specific energy (MTSE) Real density = 20-25% of MTSE (electrolyte, casing...) MTSE [kWh/kg] =  $-\frac{\Delta_r G}{\text{molar mass}} = 26.8 \frac{zU}{\text{molar mass}}$ Strong interest for Li !



### Li-ion battery

Lithium ! Non aqueous electolyte Avoid metalic electrodes







John B. Goodenough, M. Stanley Whittingham, Akira Yoshino *"for the development of lithium-ion batteries"* 

 $LiC_6 + CoO_2 \rightleftharpoons C_6 + LiCoO_2$ 

#### Batteries – under operation

 $\Delta_r G = \Delta_r G^0 + RT \ln \frac{a_{\text{products}}}{1 + RT}$ Gibbs energy depends on  $a_{\mathrm{reactants}}$ mixture concentration (a = activity = concentration in ideal case)  $U = -\frac{\Delta_r G}{zN_A e} = U^0 - \frac{k_B T}{ze} \ln \frac{a_{\text{products}}}{a_{\text{reactants}}}$ Nernst law 2.5 Voltage 2 Cell voltage (V) Lithium – iodine cell Voltage changes 1.5 during cell operation Resistance 0.5

0

0

0.2

0.4



9

8

5

3

2

1.4

1.2

0.8

**Discharged capacity (Ah)** 

1

0.6

Resistance (kΩ)

+ kinetic considerations (not addressed here)

### A zoology of batteries



#### Table 2. Common Commercial Battery Systems

| common name                    | nominal voltage | anode        | cathode                       | electrolyte                                                          |
|--------------------------------|-----------------|--------------|-------------------------------|----------------------------------------------------------------------|
| primary                        |                 |              |                               |                                                                      |
| Leclanché (carbon-zinc)        | 1.5             | zinc foil    | MnO <sub>2</sub> (natural)    | aq ZnCl <sub>2</sub> -NH <sub>4</sub> Cl                             |
| zinc chloride (carbon–zinc)    | 1.5             | zinc foil    | electrolytic MnO <sub>2</sub> | aq ZnCl <sub>2</sub>                                                 |
| alkaline                       | 1.5             | zinc powder  | electrolytic MnO <sub>2</sub> | aq KOH                                                               |
| zinc-air                       | 1.2             | zinc powder  | carbon (air)                  | aq KOH                                                               |
| silver-zinc                    | 1.6             | zinc powder  | $Ag_2O$                       | aq KOH                                                               |
| lithium–manganese dioxide      | 3.0             | lithium foil | treated MnO <sub>2</sub>      | LiCF <sub>3</sub> SO <sub>3</sub> or LiClO <sub>4</sub> <sup>a</sup> |
| lithium—carbon monofluoride    | 3.0             | lithium foil | CFx                           | LiCF <sub>3</sub> SO <sub>3</sub> or LiClO <sub>4</sub> <sup>a</sup> |
| lithium—iron sulfide           | 1.6             | lithium foil | $FeS_2$                       | $LiCF_3SO_3$ and/or $LiClO_4^a$                                      |
| rechargeable                   |                 |              |                               |                                                                      |
| lead acid                      | 2.0             | lead         | PbO <sub>2</sub>              | aq H <sub>2</sub> SO <sub>4</sub>                                    |
| nickel–cadmium                 | 1.2             | cadmium      | NiOOH                         | aq KOH                                                               |
| nickel–metal hydride           | 1.2             | MH           | NiOOH                         | aq KOH                                                               |
| lithium ion                    | 4.0             | Li(C)        | LiCoO <sub>2</sub>            | LiPF <sub>6</sub> in nonaqueous solvents <sup>a</sup>                |
| specialty                      |                 |              |                               |                                                                      |
| nickel-hydrogen                | 1.2             | $H_2$ (Pt)   | NiOOH                         | aq KOH                                                               |
| lithium-iodine                 | 2.7             | Li           | I <sub>2</sub>                | LiI                                                                  |
| lithium—silver—vanadium oxide  | 3.2             | Li           | $Ag_2V_4O_{11}$               | LiAsF <sup>a</sup>                                                   |
| lithium–sulfur dioxide         | 2.8             | Li           | $SO_2$ (C)                    | SO <sub>2</sub> –LiBr                                                |
| lithium-thionyl chloride       | 3.6             | Li           | SOC1 <sub>2</sub> (C)         | SOC1 <sub>2</sub> -LiA1C1 <sub>4</sub>                               |
| lithium—iron sulfide (thermal) | 1.6             | Li           | FeS <sub>2</sub>              | LiC1–LiBr–LiF                                                        |
| magnesium—silver chloride      | 1.6             | Mg           | AgCl                          | seawater                                                             |

### Usual battery technologies



|                                                     | Sodium-sulfur<br>(NaS)                                                                                                                                 | Lithium-ion<br>(Li-ion)                                                                                             | Nickel-cadmium<br>(NiCd)                                                                                                                      | Lead-acid<br>(LA)                                                                                                                                                    |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Efficiency<br>%                                     | 70 - 90                                                                                                                                                | 85 - 98                                                                                                             | 60 - 80                                                                                                                                       | 70 - 90                                                                                                                                                              |
| Self-discharge<br>% energy / day                    | 0.05 - 20                                                                                                                                              | 0.1 - 0.3                                                                                                           | 0.067 - 0.6                                                                                                                                   | 0.033 - 0.3                                                                                                                                                          |
| Cycle lifetime<br>cycles                            | 2,500 - 4,500                                                                                                                                          | 1,000 - 10,000                                                                                                      | 800 - 3,500                                                                                                                                   | 100 - 2,000                                                                                                                                                          |
| Expected lifetime<br>years                          | 5 - 15                                                                                                                                                 | 5 - 15                                                                                                              | 5 - 20                                                                                                                                        | 3 - 20                                                                                                                                                               |
| Specific energy<br>Wh / kg                          | 150 - 240                                                                                                                                              | 75 - 200                                                                                                            | 50 - 75                                                                                                                                       | 30 - 50                                                                                                                                                              |
| Specific power<br>W/kg                              | 150 - 230                                                                                                                                              | 150 - 315                                                                                                           | 150 - 300                                                                                                                                     | 75 - 300                                                                                                                                                             |
| Energy density<br>Wh / Liter                        | 150 - 300                                                                                                                                              | 200 - 400                                                                                                           | 60 - 150                                                                                                                                      | 30 - 80                                                                                                                                                              |
| Other<br>consideration<br>(environment &<br>safety) | Need to be maintained at<br>temperatures of 300°C to<br>350°C, entailing safety<br>issues and preventing<br>suitability to small-scale<br>applications | Lithium is highly reactive<br>and flammable, and<br>therefore requires<br>recycling programs and<br>safety measures | Cadmium is a toxic metal that<br>needs to be recycled. NiCd<br>also requires ventilation & air<br>conditioning to maintain the<br>temperature | Lead is toxic and sulfuric<br>acid is highly corrosive,<br>requiring recycling and<br>neutralization. Air<br>conditioning required to<br>maintain stable temperature |



#### Focus on Li-ion batteries

Li-ion Battery sales, MWh, Worldwide, 2000-2020





#### Li-ion Battery sales, MWh, Worldwide, 2000-2030



24

### E-mobility in France

In 2020 in France 40 000 000 vehicles ~ 400 000 electric vehicles 1%



Rie

stem in Franc

### E-mobility in the world

In 2020 in the World, similar statistics 1 000 000 000 vehicles 10 000 000 electric vehicles





#### Integration strategies



400 000 EV ↓ 15 000 000 EV Ree Integration of electric vehicles into the power system in France Avere

If uncontrolled charging: EV adds stress to the system daily operation more than holidays

Smart charging: Displace charging Not *required* (but useful) until 2035 Required for larger developments

Vehicle to grid (V2G):

Contribute to FCR and aFRR Not all vehicles

#### How many batteries ?



#### World : 10<sup>9</sup> vehicles, 50 kWh/vehicles = 50 TWh

- = 110 years of current Lead acid battery production
- = 250 years of current Li-ion battery production
- = 1 400 years of production by a Gigafactory



7.3 The carbon benefit of e-mobility is still significant when the whole life cycle of the vehicle is included, even with batteries that are made in China...

Electric vehicle: CO<sub>2</sub> issues



Rie



#### EVs use around six times more minerals than conventional vehicles

Typical use of minerals in an internal combustion engine vehicle and a battery electric vehicle

Electric vehicle: material issues

The Role of Critical Minerals in Clean Energy Transitions



IEA. All rights reserved.

Notes: For this figure, the EV motor is a permanent-magnet synchronous motor (neodymium iron boron [NdFeB]); the battery is 75 kilowatt hours (kWh) with graphite anodes.

Sources: Argonne National Laboratory (2020b, 2020a); Ballinger et al. (2019); Fishman et al. (2018b); Nordelöf et al. (2019); Watari et al. (2019).

61

no solution is

perfect !

Lecture 9 Electrical grid & electrical energy storage

I. The many time scales of grid stability Introduction to the electrical grid Time scales of grid stability Challenges raised by wind and solar integration

II. Power to X

III. Battery & electrical mobility

IV. Hydrogen



#### Hydrogen properties

Own chemical properties (Sulfur removal in petroleum refinery...)

Produce new chemicals of interest (Ammonia, Methane, Methanol...)

Haber-Bosch process:  $N_2 + 3H_2 \rightarrow 2NH_3$ 

Sabatier process:  $CO_2 + 4H_2 \xrightarrow[pressure+catalyst]{400°C} CH_4 + 2H_2O$ 

Methanol production  $CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$ 

Synthetic fuels

Energy 
$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$$
  $\begin{array}{c} \Delta G = -237 \, \mathrm{kJ/mol} \\ \Delta H_{\mathrm{HHV}} = -286 \, \mathrm{kJ/mol} \end{array}$ 



| Oxidizing agent                         |         | Reducing agent                | Reduction<br>Potential (V) |
|-----------------------------------------|---------|-------------------------------|----------------------------|
| ${ m Li}^+ + { m e}^-$                  |         | Li                            | -3.04                      |
| $Na^+ + e^-$                            | ]       | Na                            | -2.71                      |
| ${ m Mg}^{2+}+2{ m e}^{-}$              |         | Mg                            | -2.38                      |
| ${ m Al}^{3+} + 3{ m e}^-$              |         | Al                            | -1.66                      |
| $2{\rm H}_2{\rm O}({\rm l})+2{\rm e}^-$ |         | $\rm H_2(g) + 2  OH^-$        | -0.83                      |
| ${ m Cr}^{3+}+3{ m e}^-$                |         | Cr                            | -0.74                      |
| ${ m Fe}^{2+}+2{ m e}^-$                |         | Fe                            | -0.44                      |
| $2{ m H}^+ + 2{ m e}^-$                 | <u></u> | $H_2$                         | 0.00                       |
| $\mathrm{Sn}^{4+}+2\mathrm{e}^{-}$      |         | $\mathrm{Sn}^{2+}$            | 0.15                       |
| $\mathrm{Cu}^{2+}+\mathrm{e}^{-}$       |         | $\mathbf{Cu}^+$               | 0.16                       |
| $\mathrm{Ag}^+ + \mathrm{e}^-$          |         | Ag                            | +0.80                      |
| $\mathrm{Br}_2 + 2\mathrm{e}^-$         |         | $2{ m Br}^-$                  | +1.07                      |
| $\mathrm{Cl}_2 + 2\mathrm{e}^-$         |         | $2  \mathrm{Cl}^-$            | +1.36                      |
| ${\rm MnO_4^- + 8H^+ + 5e^-}$           |         | ${\rm Mn^{2+}} + 4{\rm H_2O}$ | +1.49                      |
| $\mathrm{F}_{2}+2\mathrm{e}^{-}$        |         | $2{ m F}^-$                   | +2.87                      |

# Many ways of producing hydrogen



Kerney energy transition institute

#### Many ways to use hydrogen

|           |                            | Oil refining                           | Sulphur removal, heavy crude upgrade |  |
|-----------|----------------------------|----------------------------------------|--------------------------------------|--|
| Feedstock | Industrial<br>applications | Chemicals production                   | Feedstock for ammonia and methanol   |  |
|           |                            | Iron & steel production                | Direct reduction of iron (DRI)       |  |
|           |                            | Food industry                          | Hydrogenation                        |  |
|           | Mobility                   | High temperature heat                  | Fuel gas                             |  |
|           |                            | Light-duty vehicles                    | Fuel cells                           |  |
|           |                            | Heavy duty vehicles                    | Fuel cells                           |  |
|           |                            | Maritime                               | Synthetic fuels / Fuel cells         |  |
|           |                            | Rail                                   | Fuel cells                           |  |
|           | Power<br>generation        | Aviation                               | Synthetic fuels / Fuel cells         |  |
| Energy    |                            | Co firing NH3 in coal power plants     | Additional fuel for coal power plant |  |
|           |                            | Flexible power generation              | Combustion turbines / Fuel cells     |  |
|           |                            | Back-up / off-grid power supply        | Fuel for fuel cells                  |  |
|           |                            | Long-term / large scale energy storage | Energy storage in caverns, tanks,    |  |
|           |                            | Blended H2                             | 5-20% H2 mixed with CH4              |  |
|           | Gas energy                 | Methanation                            | Transformation into CH4              |  |
|           |                            | Pure H2                                | 100% H2 injected on network          |  |



Report prepared by the IEA for the G20, Japan

### Hydrogen today



Green hydrogen < 4% of hydrogen production

Main usage = chemical

#### Water electrolysis

$$H_2 O \rightarrow H_2 + \frac{1}{2} O_2 \qquad \frac{\Delta G^0 = +237 \text{ kJ/mol}}{\Delta H_{\text{HHV}}^0 = +286 \text{ kJ/mol}}$$

Example: alkaline electrolyser

Anode

$$2OH^- \to H_2O + \frac{1}{2}O_2 + 2e^-$$

Cathode

$$2H_2O + 2e^- \to H_2 + OH^-$$

Minimal voltage

$$U \ge \frac{1}{2} \frac{\Delta G}{N_A e} = 1.23 \mathrm{V}$$



Need to provide  $\Delta H$  energy in total, with at least  $\Delta G$  as work



#### Water electrolysis in practice

$$H_2O \rightarrow H_2 + \frac{1}{2}O_2 \qquad \frac{\Delta G^0}{\Delta H_{HI}^0}$$

$$\Delta G^{0} = +237 \,\text{kJ/mol}$$
  
$$\Delta H^{0}_{\text{HHV}} = +286 \,\text{kJ/mol}$$

Need to provide  $\Delta H$  energy in total, with at least  $\Delta G$  as work









### Electrolysers

|                                                 | AE (Alkaline)                                                                                                                                                 | PEM                                                                                                                                                                                                                                                                      | SOEC                                                                                                                                                                                                        |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operating pressure (bar)                        | 1–30                                                                                                                                                          | 20–50                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                           |
| Operating temperature (°C)                      | 60–80°C                                                                                                                                                       | 50–80°C                                                                                                                                                                                                                                                                  | 650–1,000°C                                                                                                                                                                                                 |
| Current density                                 | 0.3-0.5 A/cm <sup>2</sup>                                                                                                                                     | 1-3 A/cm <sup>2</sup>                                                                                                                                                                                                                                                    | 0.5–1 A/m²                                                                                                                                                                                                  |
| Load range (% of nominal<br>load <sup>1</sup> ) | 10–110%                                                                                                                                                       | 20–100%, up to 160%                                                                                                                                                                                                                                                      | 20–100%                                                                                                                                                                                                     |
| System efficiency (% LHV)                       | 52-69%                                                                                                                                                        | 60–77%                                                                                                                                                                                                                                                                   | 74–81%                                                                                                                                                                                                      |
| Response time                                   | Start: 1–10 minutes; shut: 1–10 minutes                                                                                                                       | Start: 1 second–5 minutes; shut: few seconds                                                                                                                                                                                                                             | High                                                                                                                                                                                                        |
| Reverse mode (fuel cell<br>mode)                | No                                                                                                                                                            | No                                                                                                                                                                                                                                                                       | Depends on design                                                                                                                                                                                           |
| Stack lifetime (hours)                          | 60,000–90,000;<br>100,000–150,000 expected                                                                                                                    | 30,000–70,000 (80, 000 achieved<br>by ITM);<br>100,000–120,000 expected                                                                                                                                                                                                  | 10,000–30,000,<br>75,000–100,000 expected                                                                                                                                                                   |
| Expected R&D<br>improvements                    | <ul> <li>Scaling benefits and lower<br/>cost of BoP</li> <li>Improved lifetime of<br/>components through R&amp;D</li> <li>Improved heat exchangers</li> </ul> | <ul> <li>Scaling benefits, smaller<br/>footprint of stack, and lower<br/>cost of BoP</li> <li>Improvement in materials<br/>and components lifetime<br/>(such as lower resistance<br/>membrane, catalyst<br/>coating, and current<br/>density) through R&amp;D</li> </ul> | <ul> <li>Improvement in component<br/>lifetime (especially ceramic<br/>membrane) by improving<br/>resistance to high<br/>temperatures</li> <li>Improve response to<br/>fluctuating energy inputs</li> </ul> |
|                                                 |                                                                                                                                                               |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                             |
| Pros and cons                                   | Mature technology with track<br>records of large scale<br>projects but from old alkaline<br>technologies                                                      | Highly reactive technology<br>with small land footprint<br>thanks to high current density                                                                                                                                                                                | High potential of economical<br>benefits if coupled with heat<br>source, geothermal, or CSP                                                                                                                 |



### Fuel cell



$$\mathrm{H}_{2} + \frac{1}{2}\mathrm{O}_{2} \to \mathrm{H}_{2}\mathrm{O}$$



#### Fuel cell versus combustion

Energy transfered to (electro)chemical energy not to thermal energy

Recover W =  $-\Delta G$  rather than Q =  $-\Delta H$ 

**Fuel cell versus battery** 

Fuel cell is not storing energy. Reactants are stored elsewhere, and flow through the cell

### Fuel cell technologies



|                                             | Tempe<br>rature | Slack<br>size  | Electri<br>cal<br>perfor<br>mance<br>(LHV) |
|---------------------------------------------|-----------------|----------------|--------------------------------------------|
| Polymer<br>electrolyte<br>membrane<br>(PEM) | <120°C          | <1–<br>100kW   | 60%                                        |
| Alkaline<br>(AFC)                           | <100°C          | 1-<br>100kW    | 60%                                        |
| Phosphoric<br>acid<br>(PAFC)                | <150 –<br>200°C | 5-<br>400kW    | 40%                                        |
| Molten<br>carbonate<br>(MCFC)               | 600-<br>700°C   | 300kW<br>– 3MW | 50%                                        |
| Solid oxide<br>(SOFC)                       | 500-<br>1000°C  | 1kW-<br>2MW    | 60%                                        |

Kerney energy transition institute

### Hydrogen and the grid

Short term :

Use REN to produce decarbonized H  $\rightarrow$  Decarbonize current H usage

Middle term :

Use electrolysers to provide grid flexibility Develop new H usage

Long term :

Seasonal storage via power to gas to power loop ?



Rie

The transition to low-carbon hydrogen in France

### Hydrogen and transports



Technical specificities?

power density, freezing point ...

Costs?

Overall efficiency, feedstock availability...

Supply chain?

Compatible with current infrastructures?

Environmental impacts?

Sustainability besides CO<sub>2</sub>





# The right fuel for the right transport



#### Take home message

#### Grid stability timescales





Power to X

Battery & thermodynamics



#### Hydrogen & thermodynamics









#### 75
