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Hydraulic energy – Hydropower
● Hydro & Wind are the most ancient sources of renewable energy
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Hydroelectric Power
● Absolute production



5

Hydroelectric Power
● Share in electricity mix
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Hydroelectric Power
● Growth mostly 

concentrated in 
Asia/Pacific
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Conventional Dam
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From water wheels to water turbines
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Flow in turbines
● 2 main types of turbines
● Impulse turbine: 

● change the direction of the flow; 
momentum given to blades

● no pressure change in rotating blades
● Fixed nozzle reduce pressure & 

increase velocity (Bernouilli)
● Well adapted to water

● Reaction turbine:
● Fluid pressure ⇒ torque on blades
● Decreasing pressure at blades
● Pressure casement needed to contain 

the fluid



10

Traditional Water Wheel
● Traditional water wheels were mostly “reaction” wheel
● Large improvements in mid to late 18th century (John Smeaton)

η≈20 % → 50−60 % η≈80−90 %η≈20 % → 50−60 %
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Efficiency measurement
● Power

● Velocity head (equivalent height drop)

● Overshot:

● Undershot: 

P=η×ρ×g×h×q̇
q̇ : volume flow rate (m3 /s)

hv=
v2

2g
P≈η×10 000×h×q̇

P≈η×500×v2×q̇≈η×500×A×v3
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Pelton Wheel
● Impulse water turbine, invented by Lester Allan 

Pelton in the 1870’s
● Nozzles direct forceful, high-speed streams 

against a series of spoon-shaped buckets
● Water makes a “u-turn” in bucket frame
● Optimal tangential speed = ½ fluid velocity 

⇒ very little residual velocity (η≅95%) 
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Francis Turbines
● Inward-flow reaction turbine
● Head ~ 40 – 700 m
● Power few kW ⇒ MW
● Yield > 90%
● Components:

● Spiral casing (or volute casing) with 
numerous openings to allow the 
impinge of the working fluid on the 
blades of the runner

● Guide & stay vanes: convert pressure 
into kinetic energy

● Runner blades: produce the torque
● Draft tube: connects the runner exit to 

the tail race (discharge)
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Francis Turbines
● Three Gorges Dam 

Francis turbine runner, on 
the Yangtze River, China

● 26 turbines of 710 MW 
each

● Runner diameter 9,8 m
● Flow 116 000 m3/s
● Built by Alstom
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Kaplan Turbines
● Inward flow reaction turbine
● Rotating blades with adjustable pitch, 

evolution of Francis Turbine for low head 
applications (10 – 70 m)

● Adjustable wicket gate ensure optimal 
flow angle on the turbine

● 5 – 200 MW Power Range
● Reversible (can be used as a pump)
● Also used in tidal energy applications
● Developed in 1913 by Viktor Kaplan
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Comparison
● Pelton Turbine: suitable to high head, low flow applications

e.g.: water piped down a hillside, emerging at lower end from a 
narrow nozzle a very high velocity

● Francis Turbine: high power, suitable to a large range of 
application, fall heights 40 – 600 meters

● Kaplan Turbine: suitable to low head, large flow application 
e.g.: dam with large flow rate
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Pumped Storage
● High Capacity energy 

storage
● High efficiency
● High power (GW)
● Low energy density
● Important in the 

context of 
renewable 
energies

● See PC 9
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Pumped Storage
Country Pumped storage

generating capacity
(GW)

Total installed 
generating capacity 

(GW)

Pumped storage/
total generating 

capacity 
China 32.0 1646.0 1.9% 
Japan 28.3 322.2 8.8% 

United States 22.6 1074.0 2.1% 

Spain 8.0 106.7 7.5% 
Italy 7.1 117.0 6.1% 

India 6.8 308.8 2.2% 

Germany 6.5 204.1 3.2% 
Switzerland 6.4 19.6 32.6% 

France 5.8 129.3 4.5% 

Austria 4.7 25.2 18.7% 
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Tide Energy
● Exploit the height difference 

between low & high tides
(up to ~ 10 m)

● Predictable & regular
● But intermittent & low yield (low 

head)
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La Rance
● Oldest tidal power station in the world (1966)
● 24 bulge turbines, peak output 240 MW

● Axial turbine directly coupled to an alternator
● Adapted to very low head (2 – 15 m) and large 

flows, reversible
● Electricity cost ~ 0.12€/kWh
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Gross Figures
● Winds are 

present 
everywhere

● Global kinetic 
Energy

Global Wind Atlas, Technical University of Denmark (DTU).
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Origin of winds – Hadley cells
● Warm air at equator creates 

under-pressure and rises
● Rising air creates a circulation 

cell
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Pressure gradients
● Hot, moisture-laden air rises
● Increased altitude  colder  decrease of vapour ⇒ ⇒

saturation pressure  condensation  rain⇒ ⇒
● Air then cools (radiation) and sinks
● Generates Hadley circulations cells 
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Earth rotation
● In the absence of Earth rotation one 

would have two large Hadley cells
● Coriolis rotation causes winds to be 

deflected
● Results in the large Hadley cell to be 

broken in ~3 components
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Overall pattern
● ~ 6 cells in latitude

● Hadley & Polar cells act as heat engines
(heat  kinetic energy)⇒

● Mid-latitude cells act as heat pumps
(kinetic energy  heat) ⇒
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Total energy in winds
● Airflow kinetic energy

● Estimated global wind kinetic energy:

● Estimated wind potential depends on local conditions, technological aspects, 
etc.

● The total amount of economically extractable power available from the wind 
is considerably more than present human power use from all sources

● Power through a surface: 

E=∫S
ρ v

2

2
d S

⟨E ⟩=∫S
ρ v

2

2
d S≈1.MJ /m2

P=1
2
ρ v3 S See PC
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Onshore Wind Cost
● Continuous cost 

reduction
● Wind energy now 

competitive with fossil
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Wind energy per capita
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Take-off 
● Recent development 

driven by lower prices
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Growth
● Africa mostly left 

behind



33

European Wind Atlas
● Very strong and regular winds in 

northern Europe
● Strong potential in North-Sea, UK, 

and northern coast of France, 
Belgium, Netherlands, Germany

● See
https://map.neweuropeanwindatla
s.eu/
 

https://map.neweuropeanwindatlas.eu/
https://map.neweuropeanwindatlas.eu/
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European Wind/Sun Atlas
Wind Sun

See Lecture 9
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Yield of a wind turbine

V
1 V

2
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Betz’s Limit – Math
● Idealized flow (perfect fluid, no vorticity ⇒ Bernoulli)

● Continuity:

p1

ρ
+
v1

2

2
=
p ' 1
ρ

+
v ' 1

2

2
 and 

p2

ρ
+
v2

2

2
=
p ' 2
ρ

+
v ' 2

2

2

V
1 V

2

p1= p0 p ' 1 p ' 2 p2= p0

⇒ p ' 1− p ' 2=...=ρ ( v1
2

2
−
v2

2

2 )

v '1=v '2≡vavg
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Betz’s Limit – Math
● Thrust on rotor from momentum:

● Can be expressed as function
of pressure difference:

● Equating two expressions gives
velocity at rotor:

● Deceleration factor:
(“axial induction factor”)

● Turbine power:

F=−
d pair

d t
=ṁ( v⃗1− v⃗2)=ρv1S 1(v1−v2)

F=( p ' 1− p ' 2)×S

v avg=
v1+v2

2

v2=a×v1 , a∈[0,1]

P=F×vavg=ρS v1
3 (1+a)(1−a

2)
4
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Betz’s Limit – Math
● Thrust on rotor

● Idealized flow (perfect fluid, no vorticity ⇒ Bernoulli)

F⃗=−
d p⃗air

d t
=ṁ( v⃗1− v⃗2)=ρv1S 1(v1−v2)

p1

ρ
+
v1

2

2
=
p ' 1
ρ

+
v ' 1

2

2
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2
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Betz's Limit
● Turbine yield

● Maximal power obtained for a = 1/3.
● In that case, 16/27≃ 59% of the 

wind power is extracted

C p=
P turbine

Pwind
=
(1+a)(1−a2)

2

See PC
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Beating Betz's limit
● Beating Betz's limit is very challenging
● Some concepts discussed in the literature:

● Two or more disks in series (Loth, J.L. & McCoy, 
H., 1983)  C⇒ p  64% ≃

● Vertical Axis turbines (Darrieus type) with several 
rotors

● …
● The efficiency gain is not worth the much larger 

complexity
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Betz vs Hydro
● Wind turbines are limited to Cp ≃ 59%  
● Water turbine (dam) go up to Cp ≃ 95% 

Why?

● Difference in fluid flow: immersed in fluid or not (interaction of neighbouring 
fluid resisting to pressure)
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Effect of rotation
● “Tip Speed Ratio” (TSR): Speed ratio at end of blades: 

U: speed of the wind (far away)
Ω: angular rotation speed
R: blade length

● Rotation transforms Thrust into Torque.
● Betz's limit only considers thrust and ignores rotation
● But wind behind the turbine must have some kinetic momentum!

λ=ΩR
U
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Glauert’s limit
● Introduction of an “angular 

induction factor”
ω is the fluid angular rotation speed

● Elementary torque for a slide dr is:

● 2 parameters now need to be optimized.
Net result (Glauert, 1993)

● “Swirl” losses at low tip-speed ratio
● Blades are more efficient at large velocities

Apparent (rotating) winds becomes dominant

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

27
C

p/
16

TSR

Glauert’s optimum rotor
a '= ω

2Ω

dM=4 r3v1(1−a)a ' d r

a '=1−3a
1+4 a

C p

C p
Betz

See PC



45

Glauert’s limit for dummies
● At low velocity, a fan produced a 

turbulent air flow
● Need high velocity & low 

incidence blades to produce a ~ 
parallel flow
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Lift & Drag Forces

F L = 1
2
ρ Av2C L(α) F D = 1

2
ρ Av2C D(α)

● Drag force parallel to air flow (resist to movement)
● Lift for orthogonal to it (makes birds & planes fly)
● Depends on square of wind speed
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Variation with attack angle
F L = 1

2
ρAv2C L(α)

F D = 1
2
ρAv2C D(α)

CL

CL

CD


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Lift force at zero angle

F
P

● Lift force can be non-zero at zero attack angle
● Depends on wing profile
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Origin of Drag Force
● Only appearing in viscous fluids

Two symmetrical vortices
Under pressure → drag force

Object without profile

Object with profile
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Stall Speed
● At large speed/attack angle, lift force is significantly reduced by turbulence
● Sudden drop at “stall angle”



52

Lecture 7 – Wind & Hydro Energies
I. Hydraulic energy 

II. Wind Resources

III. Betz Limit

IV. Basics of aerodynamics

V. Wind Turbines

VI. Submarine turbines

VII.Conclusions & Outlook



53

Drag Force Wind Mill
● Drag force larger on concave side 

than on convex side
● Induces torque

    DOI: 10.1016/j.egypro.2015.03.259
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Traditional Mill (low velocity)
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Horizontal Axis Wind Turbine
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Components – Gearbox
● Output frequency must be adjusted precisely to network (50 or 60 Hz)
● Most turbines use a gearbox connected to high-speed shaft
● Undergo severe and variable transient loading (start-up, shut-down, grid 

connection, wind fluctuations)
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Frequency control
● Adjustment of rotational speed of rotor via

● Pitch : rotational angle of the blades
● Yaw: direction the wind turbine blades & nacelle are facing

● Allow the turbine to run freely at any speed
● Need a power electronic frequency converter (full effect converter)

● Use a double-feed, inductive-type generator (DFIG)
● Use two three-phase windings, one stationary and one rotating
● One winding directly connected to the grid
● Can accept varying input speed (in some range)
● See lecture notes

See Lecture 9
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Direct drive turbines
● Use permanent magnet synchronous generator (instead of coil)
● Allow slower rotational speed input, less constraints, reduced noise, longer 

lifetime, reduced maintenance
● More costly & require rare earth elements (Neodymium)
● ~5% of current turbines, increasing (in particular for off-shore)
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Direct drive turbines
● Need DC ⇒ AC conversion system
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Typical Power Curve of a wind turbine
vstart Vaverage vnominal vstop

generator!
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Structure of blades
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Blades
● Mostly made of fiber-reinforced 

polymers (FRPs)
● Some are reinforced with Carbon 

Nano-tubes 
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Transportation
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Vorticity & interaction between blades
● Actuator line computation showing 

vorticity contours and part of 
computational mesh around a three-
bladed rotor.(Mikkelsen R., 2003)
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Interactions between turbines
● Turbulence induces 

interaction between turbines
● Implies

● Lateral spacing ~ 4 times 
radius

● Longitudinal spacing ~ 7 
times radius

(Mikkelsen R., 
2003)



66

Yield of various systems
● Speed ratio at end of 

blades (tip-speed-
ratio) : 
U: speed of the wind 
(far away)
Ω: angular rotation 
speed
R: blade length

λ=ΩR
U
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Yield of turbines
● 3 blades turbines tend to be the 

most efficient
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Growing sizes
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Large size Wind Turbines
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Savonius Rotor
● Drag force driven
● Can operate on a large range of 

wind speeds
● Insensitive to wind direction



71

Darreius  Rotor
● Rotor spinning at a rate ~unrelated

to wind speed
● Larger infrastructure cost (large 

fraction of the wing not effective)
● High centrifugal stress on the 

mechanisms
● Sinusoidal (pulsing) power that 

complicates design
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Helical Darrieus Turbine
● Lightweight, more regular flow
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Offshore wind potential
● Geospatial analysis by IEA (2019)

● Potential: 36 000 TWh/yr (≤60 m deep, 
≤60 km from shore)
> global electricity demand (23 000 
TWh/yr)

● Floating turbine could supply ~11 times 
the world demand.

● Offshore wind is set to be competitive with 
fossil fuels within the next decade, as well 
as with other renewables including solar 
PV
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Offshore Wind Outlook

Offshore Wind 
Outlook 2019
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Simulated capacity
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Offshore Wind Growth
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Installed capacity
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Complementarity with PV
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Projected offshore wind capacity (world)
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Europe
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Challenges of floating wind turbines
● Wind thrust exerts a torque on the turbine mast

 inclination + drift⇒
● 6 additional degrees of freedom:

● 3 translational (surge X, sway Y, heave Z)
● 3 rotational (roll X, pitch Y, yaw Z)

+ motion caused by waves
● Need to be properly balanced!
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Floating wind turbines design
● Three main designs

● Spar-buoy: long, 
weighted cylinder 
acting as balance 
(“Ballast Stabilized”)

● Semi-submersible 
platforms (“Buoyancy 
Stabilized”)

● Tension-leg structure 
with smaller platform 
anchored to the seabed 
with taut mooring lines
(“Mooring Line 
Stabilized”)
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Semi-submersible floating wind turbines
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Connection to the grid
● Distant offshore wind farms use an internal grid (AC, ~33 kV) connected to a 

substation (⇒ transmission to shore, AC, ~150 kV)
● High Voltage DC current might be an option for shore connection 

(distances > 100 km)
● Other possibility: direct production

of renewable hydrogen (avoid needs
for transmission)

Transmission 
to shore 

Collection 
grid 

Substation Wind turbines with monopile foundation
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Environmental Impact
● Currently quite not clear:

●  Impact of foundations 
(concrete), cable path, etc.

●  Artificial reef, creation of 
new living area for shells 
and subsequently for fishes

● To be considered in design
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Projections
● “Offshore wind power deployment 

would grow gradually to nearly 1 
000 GW of total installed capacity 
by 2050.” 
(IRENA, “Future of Wind, 2019)
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Marine Turbines
● Marine Turbines: higher density (×1000), current steadier but less intense, 

predictable (tidal)
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Energy range
● Power P=1

2
ρ v3 S

Speed (m/s) Power Density 
(W/m2)

1 8

2 60

3 200

4 500

5 1000

https://
www.withouthotair.com
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Steady currents
● Typical velocities ~1 m/s
● Power in Gulf Stream 

~ 50  GW
● << tidal currents!
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Tidal amplitude

The lunar tidal component as measured by the U.S./French satellite TOPEX/Poseidon.
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Tidal potential

Global tidal stream resource (Atlantis, n.d.)
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Marine Turbines
● Similar design to wind 

turbines, but smaller 
sizes
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Wave Turbines
● Reduce strength of crashing waves and produces energy
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Take-home message
● Hydroelectric energy is saturating in 

developed countries
● Wind energy is a mature technology, 

becoming continuously cheaper
● Expected to play a significant role in 

energy transition
● Off-shore is very promising (more 

regular, stronger winds) but some 
challenges

● Pumped storage important to mitigate 
transient aspects of wind energy

● Submarine turbines may be further 
developed
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