Lecture 7 Wind & Hydro Energies

PHY 555 – Energy & Environment Erik Johnson, Mathieu de Naurois, Daniel Suchet

Lecture 7 – Wind & Hydro Energies

- I. Hydraulic energy
- II. Wind Resources
- III. Betz Limit
- IV. Basics of aerodynamics
- V. Wind Turbines
- VI. Submarine turbines
- **VII.**Conclusions & Outlook

Hydraulic energy – Hydropower

• Hydro & Wind are the most ancient sources of renewable energy

Hydroelectric Power

Our World

in Data

• Absolute production

Hydropower generation Annual hydropower generation is measured in terawatt-hours (TWh).

OurWorldInData.org/renewable-energy • CC BY

Hydroelectric Power

Share in electricity mix •

Share of electricity production from hydropower

Hydroelectric Power

Growth mostly concentrated in Asia/Pacific

Hydropower generation by region

Hydropower generation is measured in terawatt-hours (TWh) per year.

Source: Statistical Review of World Energy - BP (2021) Note: CIS (Commonwealth of Independent States) is an organization of ten post-Soviet republics in Eurasia following break-up of the Soviet Union.

Our World

in Data

OurWorldInData.org/renewable-energy • CC BY

Conventional Dam

7

From water wheels to water turbines Generator Stator Shaft Rotor Turbine Water flow Wicket gate Blades 8

Flow in turbines

- 2 main types of turbines
- Impulse turbine:
 - change the direction of the flow; momentum given to blades
 - no pressure change in rotating blades
 - Fixed nozzle reduce pressure & increase velocity (Bernouilli)
 - Well adapted to water
- Reaction turbine:
 - Fluid pressure \Rightarrow torque on blades
 - Decreasing pressure at blades
 - Pressure casement needed to contain the fluid

Traditional Water Wheel

- Traditional water wheels were mostly "reaction" wheel
- Large improvements in mid to late 18th century (John Smeaton)

Efficiency measurement

- Power $P = \eta \times \rho \times g \times h \times \dot{q}$ \dot{q} : volume flow rate (m³/s)
- Velocity head (equivalent height drop) $h_v = \frac{v^2}{2g}$
- Overshot: $P \approx \eta \times 10000 \times h \times \dot{q}$
- Undershot: $P \approx \eta \times 500 \times v^2 \times \dot{q} \approx \eta \times 500 \times A \times v^3$

Pelton Wheel

- Impulse water turbine, invented by Lester Allan Pelton in the 1870's
- Nozzles direct forceful, high-speed streams against a series of spoon-shaped buckets
- Water makes a "u-turn" in bucket frame
- Optimal tangential speed = ½ fluid velocity
 ⇒ very little residual velocity (η≈95%)

Francis Turbines

- Inward-flow reaction turbine
- Head ~ 40 700 m
- Power few $kW \Rightarrow MW$
- Yield > 90%
- Components:
 - Spiral casing (or volute casing) with numerous openings to allow the impinge of the working fluid on the blades of the runner
 - Guide & stay vanes: convert pressure into kinetic energy
 - Runner blades: produce the torque
 - Draft tube: connects the runner exit to the tail race (discharge)

Francis Turbines

- Three Gorges Dam Francis turbine runner, on the Yangtze River, China
- 26 turbines of 710 MW each
- Runner diameter 9,8 m
- Flow 116 000 m³/s
- Built by Alstom

Kaplan Turbines

- Inward flow reaction turbine
- Rotating blades with adjustable pitch, evolution of Francis Turbine for low head applications (10 – 70 m)
- Adjustable wicket gate ensure optimal flow angle on the turbine
- 5 200 MW Power Range
- Reversible (can be used as a pump)
- Also used in tidal energy applications
- Developed in 1913 by Viktor Kaplan

Comparison

- Pelton Turbine: suitable to high head, low flow applications

 e.g.: water piped down a hillside, emerging at lower end from a
 narrow nozzle a very high velocity
- Francis Turbine: high power, suitable to a large range of application, fall heights 40 600 meters
- Kaplan Turbine: suitable to low head, large flow application e.g.: dam with large flow rate

Powerplant Chamber

Breakers Transformer Vault

Pumped Storage

High Capacity energy Visitors Center_ Pumped-Storage Plant storage High efficiency Intake • High power (GW) • Elevator Low energy density • Important in the • context of Main Access Tunnel renewable -Surge Chamber Discharge energies See PC 9

Switchyard

Reservoir

Pumped Storage

Country	Pumped storage generating capacity (GW)	Total installed generating capacity (GW)	Pumped storage/ total generating capacity
China	32.0	1646.0	1.9%
Japan	28.3	322.2	8.8%
United States	22.6	1074.0	2.1%
Spain	8.0	106.7	7.5%
Italy	7.1	117.0	6.1%
India	6.8	308.8	2.2%
Germany	6.5	204.1	3.2%
Switzerland	6.4	19.6	32.6%
France	5.8	129.3	4.5%
Austria	4.7	25.2	18.7%

Tide Energy

- Exploit the height difference between low & high tides (up to ~ 10 m)
- Predictable & regular
- But intermittent & low yield (low head)

La Rance

- Oldest tidal power station in the world (1966)
- 24 bulge turbines, peak output 240 MW
 - Axial turbine directly coupled to an alternator
 - Adapted to very low head (2 15 m) and large flows, reversible
- Electricity cost ~ 0.12€/kWh

Lecture 7 – Wind & Hydro Energies

- I. Hydraulic energy
- **II. Wind Resources**
- III. Betz Limit
- IV. Basics of aerodynamics
- V. Wind Turbines
- VI. Submarine turbines
- **VII.**Conclusions & Outlook

Gross Figures

- Winds are present everywhere
- Global kinetic Energy

Global Wind Atlas, Technical University of Denmark (DTU).

Origin of winds – Hadley cells

- Warm air at equator creates under-pressure and rises
- Rising air creates a circulation cell

н solar radiation н Rising air \rightarrow low pressure Sinking air \rightarrow high pressure

Pressure gradients

- Hot, moisture-laden air rises
- Increased altitude ⇒ colder ⇒ decrease of vapour saturation pressure ⇒ condensation ⇒ rain
- Air then cools (radiation) and sinks
- Generates Hadley circulations cells

Earth rotation

- In the absence of Earth rotation one would have two large Hadley cells
- Coriolis rotation causes winds to be deflected
- Results in the large Hadley cell to be broken in ~3 components

Overall pattern

- ~ 6 cells in latitude
 - Hadley & Polar cells act as heat engines (heat ⇒ kinetic energy)
 - Mid-latitude cells act as heat pumps (kinetic energy ⇒ heat)

Total energy in winds

- Airflow kinetic energy $E = \int_{S} \rho \frac{v^2}{2} dS$
- Estimated global wind kinetic energy: $\langle j \rangle$

$$\langle E \rangle = \int_{S} \rho \frac{v^2}{2} \mathrm{d} S \approx 1. \,\mathrm{MJ/m^2}$$

- Estimated wind potential depends on local conditions, technological aspects, etc.
- The total amount of economically extractable power available from the wind is considerably more than present human power use from all sources
- Power through a surface:

$$P = \frac{1}{2}\rho v^3 S \qquad \text{See PC}$$

Onshore Wind Cost

Our World

in Data

- Continuous cost reduction
- Wind energy now competitive with fossil

Onshore wind cost per kilowatt-hour, 1983 to 2017

Wind energy per capita

Per capita electricity generation from wind

Source: Our World in Data based on BP Statistical Review of World Energy & Ember

OurWorldInData.org/energy • CC BY atistical Review of World Energy & Ember

Take-off

• Recent development driven by lower prices

Wind energy generation is measured in terawatt-hours (TWh) per year. Figures include both onshore and offshore wind sources.

Source: Statistical Review of World Energy - BP (2021)

OurWorldInData.org/renewable-energy • CC BY

Note: CIS (Commonwealth of Independent States) is an organization of ten post-Soviet republics in Eurasia following break-up of the Soviet Union.

Our World

32

>50%

OurWorldInData.org/energy • CC BY

25%

Growth

in Data

Our World

Annual percentage change in wind energy generation Shown is the percentage change in wind energy generation relative to the previous year.

Africa mostly left ● behind

> -25% -5% 5% Source: Our World in Data based on BP Statistical Review of World Energy

-10%

0%

10%

<-50%

No data

European Wind Atlas

- Very strong and regular winds in northern Europe
- Strong potential in North-Sea, UK, and northern coast of France, Belgium, Netherlands, Germany
- See

https://map.neweuropeanwindatla s.eu/

Sheltered terrain ²		Open plain ³		At a sea coast ⁴		Open sea ⁵		Hills and ridges ⁶	
m s ⁻¹	Wm^{-2}	$\rm ms^{-1}$	Wm^{-2}	$m s^{-1}$	Wm^{-2}	$m s^{-1}$	Wm^{-2}	m s ⁻¹	Wm^{-2}
> 6.0	> 250	> 7.5	> 500	> 8.5	> 700	> 9.0	> 800	> 11.5	> 1800
5.0-6.0	150-250	6.5-7.5	300-500	7.0-8.5	400-700	8.0-9.0	600-800	10.0-11.5	1200-1800
4.5-5.0	100-150	5.5-6.5	200-300	6.0-7.0	250-400	7.0-8.0	400-600	8.5-10.0	700-1200
3.5-4.5	50-100	4.5-5.5	100-200	5.0-6.0	150-250	5.5-7.0	200-400	7.0- 8.5	400- 700
< 3.5	< 50	< 4.5	< 100	< 5.0	< 150	< 5.5	< 200	< 7.0	< 400

European Wind/Sun Atlas

Lecture 7 – Wind & Hydro Energies

- I. Hydraulic energy
- II. Wind Resources
- III. Betz Limit
- IV. Basics of aerodynamics
- V. Wind Turbines
- VI. Submarine turbines
- **VII.**Conclusions & Outlook

Yield of a wind turbine

36

Betz's Limit – Math

• Idealized flow (perfect fluid, no vorticity ⇒ Bernoulli)

$$\frac{p_1}{\rho} + \frac{v_1^2}{2} = \frac{p'_1}{\rho} + \frac{v'_1^2}{2} \quad \text{and} \quad \frac{p_2}{\rho} + \frac{v_2^2}{2} = \frac{p'_2}{\rho} + \frac{v'_2^2}{2}$$

• Continuity: $v'_1 = v'_2 \equiv v_{avg}$

$$\Rightarrow p'_{1} - p'_{2} = \dots = \rho \left(\frac{v_{1}^{2}}{2} - \frac{v_{2}^{2}}{2} \right)$$

Betz's Limit – Math

- Thrust on rotor from momentum: $F = -\frac{\mathrm{d} p_{\mathrm{air}}}{\mathrm{d} t} = \dot{m}(\vec{v_1} \vec{v_2}) = \rho v_1 S_1(v_1 v_2)$
- Can be expressed as function of pressure difference:
- Equating two expressions gives velocity at rotor:

• Turbine power:

$$v_{avg} = \frac{v_1 + v_2}{2}$$

 $F = (p'_1 - p'_2) \times S$

$$v_2 = \mathbf{a} \times v_1, \quad \mathbf{a} \in [0,1]$$

$$P = F \times v_{avg} = \rho S v_1^3 \frac{(1+a)(1-a^2)}{4}$$

Betz's Limit – Math

• Thrust on rotor
$$\vec{F} = -\frac{d \vec{p}_{air}}{d t} = \dot{m}(\vec{v}_1 - \vec{v}_2) = \rho v_1 S_1(v_1 - v_2)$$

• Idealized flow (perfect fluid, no vorticity \Rightarrow Bernoulli)

Betz's Limit

• Turbine yield

$$C_p = \frac{P_{\text{turbine}}}{P_{\text{wind}}} = \frac{(1+a)(1-a^2)}{2}$$

- Maximal power obtained for a = 1/3.
- In that case, $16/27 \simeq 59\%$ of the wind power is extracted

See PC

Beating Betz's limit

- Beating Betz's limit is very challenging
- Some concepts discussed in the literature:
 - Two or more disks in series (Loth, J.L. & McCoy, H., 1983) \Rightarrow C_p \simeq 64%
 - Vertical Axis turbines (Darrieus type) with several rotors
 - ...
- The efficiency gain is not worth the much larger complexity

. I Two actuator disks in series.

Betz vs Hydro

- Wind turbines are limited to $C_p \simeq 59\%$
- Water turbine (dam) go up to $C_p \simeq 95\%$

Why?

• Difference in fluid flow: immersed in fluid or not (interaction of neighbouring fluid resisting to pressure)

Effect of rotation

- "Tip Speed Ratio" (TSR): Speed ratio at end of blades:
 - U: speed of the wind (far away)
 - Ω : angular rotation speed
 - R: blade length
- Rotation transforms Thrust into Torque.
- Betz's limit only considers thrust and ignores rotation
- But wind behind the turbine must have some kinetic momentum!

Glauert's limit

- Introduction of an "*angular* $a' = -\omega$ induction factor" ω is the fluid angular rotation speed
- Elementary torque for a slide dr is:

 $dM = 4r^3v_1(1-a)a'dr$

- 2 parameters now need to be optimized. Net result (Glauert, 1993) $a' = \frac{1-3a}{1+4a}$
- "Swirl" losses at low tip-speed ratio
- Blades are more efficient at large velocities Apparent (rotating) winds becomes dominant

09 0.8

0.7

0.6

0.4 0.3

0.2 0.1 0 0

27Cp/16 0.5

Glauert's limit for dummies

- At low velocity, a fan produced a turbulent air flow
- Need high velocity & low incidence blades to produce a ~ parallel flow

Lecture 7 – Wind & Hydro Energies

- I. Hydraulic energy
- II. Wind Resources
- III. Betz Limit
- **IV. Basics of aerodynamics**
- V. Wind Turbines
- VI. Submarine turbines
- **VII.**Conclusions & Outlook

Lift & Drag Forces

- Drag force parallel to air flow (resist to movement)
- Lift for orthogonal to it (makes birds & planes fly)
- Depends on square of wind speed

Lift force at zero angle

- Lift force can be non-zero at zero attack angle
- Depends on wing profile

Origin of Drag Force

- Only appearing in viscous fluids
 - Object without profile

Two symmetrical vortices Under pressure \rightarrow drag force

Stall Speed

- At large speed/attack angle, lift force is significantly reduced by turbulence
- Sudden drop at "stall angle"

Lecture 7 – Wind & Hydro Energies

- I. Hydraulic energy
- II. Wind Resources
- III. Betz Limit
- IV. Basics of aerodynamics
- V. Wind Turbines
- VI. Submarine turbines
- VII.Conclusions & Outlook

Drag Force Wind Mill

- Drag force larger on concave side than on convex side
- Induces torque

DOI: 10.1016/j.egypro.2015.03.259

Traditional Mill (low velocity)

Horizontal Axis Wind Turbine

Components – Gearbox

- Hz)
- Output frequency must be adjusted precisely to network (50 or 60 Hz)
- Most turbines use a gearbox connected to high-speed shaft
- Undergo severe and variable transient loading (start-up, shut-down, grid connection, wind fluctuations)

Frequency control

- Adjustment of rotational speed of rotor via
 - Pitch : rotational angle of the blades
 - Yaw: direction the wind turbine blades & nacelle are facing
- Allow the turbine to run freely at any speed
 - Need a power electronic frequency converter (full effect converter)

- Use a double-feed, inductive-type generator (DFIG)
 - Use two three-phase windings, one stationary and one rotating
 - One winding directly connected to the grid
 - Can accept varying input speed (in some range)
 - See lecture notes

Direct drive turbines

- Use permanent magnet synchronous generator (instead of coil)
- Allow slower rotational speed input, less constraints, reduced noise, longer lifetime, reduced maintenance
- More costly & require rare earth elements (Neodymium)
- ~5% of current turbines, increasing (in particular for off-shore)

Direct drive turbines

• Need $DC \Rightarrow AC$ conversion system

Typical Power Curve of a wind turbine

Structure of blades

Blades

- Mostly made of fiber-reinforced polymers (FRPs)
 - Some are reinforced with Carbon Nano-tubes

Transportation

Vorticity & interaction between blades

• Actuator line computation showing vorticity contours and part of computational mesh around a three-bladed rotor.(Mikkelsen R., 2003)

Interactions between turbines

- Turbulence induces interaction between turbines
- Implies
 - Lateral spacing ~ 4 times radius
 - Longitudinal spacing ~ 7 times radius

Yield of various systems

- Speed ratio at end of blades (tip-speed-ratio) :
 - U: speed of the wind (far away)
 - $\hat{\Omega}$: angular rotation speed
 - R: blade length

Yield of turbines

 3 blades turbines tend to be the most efficient

Technology advances enabled offshore wind turbines to become much bigger in just a few years and are supporting ongoing increases in scale

Large size Wind Turbines

Savonius Rotor

- Drag force driven •
- Can operate on a large range of \bullet wind speeds
- Insensitive to wind direction \bullet

Darreius Rotor

- Rotor spinning at a rate ~unrelated to wind speed
- Larger infrastructure cost (large fraction of the wing not effective)
- High centrifugal stress on the mechanisms
- Sinusoidal (pulsing) power that complicates design

Helical Darrieus Turbine

• Lightweight, more regular flow

Offshore wind potential

- Geospatial analysis by IEA (2019)
 - Potential: 36 000 TWh/yr (≤60 m deep, ≤60 km from shore)
 > global electricity demand (23 000 TWh/yr)
 - Floating turbine could supply ~11 times the world demand.
- Offshore wind is set to be competitive with fossil fuels within the next decade, as well as with other renewables including solar PV

Offshore Wind Outlook 2019
Offshore Wind Outlook

Electricity demand
 Offshore wind potential

Simulated capacity

Average capacity factors reflect the quality of the wind resources available offshore around the world

Offshore Wind Growth

Deployment of offshore wind has increased by nearly 30% per year since 2010, second only to solar PV, as the technology and industry have matured

Installed capacity

Most leading countries in offshore wind are in Europe, led by the United Kingdom, though China has quickly joined the top-three and is gaining momentum

Complementarity with PV

Seasonality of offshore wind can complement that of solar PV

Projected offshore wind capacity (world)

Europe

Average annual capacity additions

Share of electricity supply

Challenges of floating wind turbines

- Wind thrust exerts a torque on the turbine mast ⇒ inclination + drift
 - 6 additional degrees of freedom:
 - 3 translational (surge X, sway Y, heave Z)
 - 3 rotational (roll X, pitch Y, yaw Z)
 - + motion caused by waves
 - Need to be properly balanced!

Floating wind turbines design

- Three main designs
 - Spar-buoy: long, weighted cylinder acting as balance ("Ballast Stabilized")
 - Semi-submersible platforms ("Buoyancy Stabilized")
 - Tension-leg structure with smaller platform anchored to the seabed with taut mooring lines ("Mooring Line Stabilized")

Semi-submersible floating wind turbines

Connection to the grid

- Distant offshore wind farms use an internal grid (AC, ~33 kV) connected to a substation (⇒ transmission to shore, AC, ~150 kV)
- High Voltage DC current might be an option for shore connection (distances > 100 km)
- Other possibility: direct production of renewable hydrogen (avoid needs for transmission)

Environmental Impact

- Currently quite not clear:
 - B Impact of foundations (concrete), cable path, etc.
 - ③ Artificial reef, creation of new living area for shells and subsequently for fishes
- To be considered in design

Projections

 "Offshore wind power deployment would grow gradually to nearly 1 000 GW of total installed capacity by 2050."

(IRENA, "Future of Wind, 2019)

Offshore wind - Global

Source: Historical values based on IRENA's renewable capacity statistics (IRENA, 2019d), future projections based on IRENA's analysis (IRENA, 2019a)

Lecture 7 – Wind & Hydro Energies

- I. Hydraulic energy
- II. Wind Resources
- III. Betz Limit
- IV. Basics of aerodynamics
- V. Wind Turbines

VI. Submarine turbines & tidal energy

VII.Conclusions & Outlook

Marine Turbines: higher density (×1000), current steadier but less intense, predictable (tidal)

Marine Turbines

Energy range

• Power
$$P = \frac{1}{2}\rho v^3 S$$

Speed (m/s)	Power Density (W/m²)
1	8
2	60
3	200
4	500
5	1000

https://

Steady currents

- Typical velocities ~1 m/s
- Power in Gulf Stream
 ~ 50 GW
- << tidal currents!

Tidal amplitude

The lunar tidal component as measured by the U.S./French satellite TOPEX/Poseidon.

Tidal potential

Global tidal stream resource (Atlantis, n.d.)

Marine Turbines

• Similar design to wind turbines, but smaller sizes

Wave Turbines

• Reduce strength of crashing waves and produces energy

Lecture 7 – Wind & Hydro Energies

- I. Hydraulic energy
- II. Wind Resources
- III. Betz Limit
- IV. Basics of aerodynamics
- V. Wind Turbines
- VI. Submarine turbines

VII.Conclusions & Outlook

Take-home message

- Hydroelectric energy is saturating in developed countries
- Wind energy is a mature technology, becoming continuously cheaper
- Expected to play a significant role in energy transition
- Off-shore is very promising (more regular, stronger winds) but some challenges
- Pumped storage important to mitigate transient aspects of wind energy
- Submarine turbines may be further developed

