Lecture 6 Thermal energy

PHY 555 – Energy & Environment Erik Johnson, Mathieu de Naurois, Daniel Suchet

Today's menu

Hot reminders

All heats are not equal!

Exergy : in a given environment, how much work can be recovered from the provided heat?

$$W_{\rm max} = Q \times \left(1 - \frac{T_{\rm envir.}}{T_{\rm source}}\right)$$

Heat [J] is not temperature [K] (even though heat is often used to increase temperature)

Heat is not stored. Thermal energy is.

Lecture 8 – thermal energy

I. Overview of heat consumption (what, why, how much ?)

- II. Heat conduction
 - Heat transfer & heat equation
 - Insulation 101
 - Thermal energy management
- III. Heat generation
 - Geothermal energy
 - Heat pump
 - Combined heat and power generation

The roof, the roof, the roof is on fire

Figure 7.1 Global renewable heat consumption by fuel and technology, 2019

IEA. All rights reserved.

Industrial heat

Industrial energy consumption is concentrated in high-temperature applications

Global industrial final energy consumption by sector¹ Exajoules, 2019

High temperatures are required to reduce oxides

Ellington diagram : ΔG versus T

Domestic heat

Average residential consumption per capita in France (data : CEREN (2019))

7

French heat regulation

French heat regulation (cont'd)

Heating and cooling

Today : Air conditioners and electric fans = 20% buildings electricity

2050: The share of space cooling in total electricity use in buildings grows to 30%. Cooling becomes the strongest driver of growth in buildings electricity demand, responsible for 40% of the total growth

Figure 3.7 • The role of drivers of energy demand for space cooling in the Baseline Scenario

Key message • Booming sales of ACs more than outweigh the impact of continuing gains in energy efficiency.

Jevon's paradox again !

Perspective for domestic heating and cooling

Heating and cooling technologies' contribution to CO2 emissions reduction

World energy outlook, 2021

Lecture 8 – thermal energy

I. Overview of heat consumption (what, why, how much ?)

II. Heat conduction

- Heat transfer & heat equation
- Insulation 101
- Thermal energy management
- III. Heat generation
 - Geothermal energy
 - Heat pump
 - Combined heat and power generation

Heat loss mechanisms

Heat loss scaling laws

> Heat is produced in the volume of the system

More volume means more production

 $Q_{\text{generated}} \propto V \propto L^3$

> Heat is exchanged through the interface with the environment

More surface means more losses

 $Q_{\rm lost} \propto S \propto L^2$

 Q_{lost}

 $Q_{\text{generated}}$

 $\propto \frac{1}{L}$

Heat conduction – Fourier's law

Gradient in potential(s) \rightarrow flow of conjugated quantity(ies)

Gradient in temperature \rightarrow flow of heat

 $\mathbf{J} = -\lambda \boldsymbol{\nabla} T$

Thermal conductivity [W/K/m²]

(Thermal Conductivity at RT)

Thermal Conductivity /W/(m·K)

Heat equation

Fourier's law

Energy conservation

Heat capacity

$$\frac{du}{dt} + \operatorname{div} \mathbf{J} = 0$$
$$du = CdT$$

 $\mathbf{J} = -\lambda \boldsymbol{\nabla} T$

Typical diffusion behavior

$$\Delta T(x,t) = \frac{\Delta T_0}{\sqrt{2\pi Dt}} \exp\left(-\frac{x^2}{2Dt}\right)$$

Scaling $x \sim \sqrt{Dt}$

Heat equation $\frac{\partial T}{\partial t} = D \,\Delta T$

Diffusion coefficient

with $D = \frac{\lambda}{\rho c} [\mathrm{m}^2.\mathrm{s}^{-1}]$

Х

17

Heat equation

 $\mathbf{J} = -\lambda \boldsymbol{\nabla} T$

Fourier's law

Energy conservation

Heat capacity

Energy conservation
$$\frac{du}{dt} + \operatorname{div} \mathbf{J} = 0$$

Heat capacity $du = CdT$
Typical diffusion behavior $\Delta T(x,t) = \frac{\Delta T_0}{\sqrt{2\pi Dt}} \exp\left(-\frac{x^2}{2Dt}\right)$ appendix $\Delta T(x,t) = \frac{\Delta T_0}{\sqrt{2\pi Dt}} \exp\left(-\frac{x^2}{2Dt}\right)$

 $x \sim \sqrt{Dt}$

Scaling

with

Diffusion coefficient

 $D = \frac{\lambda}{\rho c} [\mathrm{m}^2 .\mathrm{s}^{-1}]$

Х

Lecture 8 – thermal energy

I. Overview of heat consumption (what, why, how much ?)

II. Heat conduction

- Heat transfer & heat equation
- Insulation 101
- Thermal energy management

III. Heat generation

- Geothermal energy
- Heat pump
- Combined heat and power generation

Three direct consequences :

- Thermal resistance
- Thermal inertia
- Thermal comfort

Two indirect consequences :

- Thermal energy transmission
- Thermal energy storage

Stationnary state - Thermal resistance

We want to maintain a different temperature inside as compared to outside. What is the heat flow that must be sustained?

Steady state
$$\frac{\partial T}{\partial t} = 0 \Rightarrow \Delta T = 0$$
 $\mathbf{J} = -\lambda \nabla T \neq 0$

Linear temperature profile
$$T(x) = T_{in} + \frac{T_{out} - T_{in}}{w}x$$

Heat density of flux
$$J = -\lambda \frac{T_{\rm out} - T_{\rm in}}{w}$$

Heat resistivity

Heat flow

$$\phi = J \times S = \frac{T_{\rm in} - T_{\rm out}}{R}$$

 $R = \frac{w}{S\lambda}$

20

Series resistance

We want to maintain a different temperature inside as compared to outside. What is the heat flow that must be sustained?

 $\phi_2 = \frac{T_{\text{middle}} - T_{\text{out}}}{R_2}$

Heat flow

 $\phi_1 = \frac{T_{\rm in} - T_{\rm middle}}{R_1}$ $\phi_1 = \phi_2 = \phi$ Flow continuity

$$\phi = \frac{T_{\rm in} - T_{\rm out}}{R_1 + R_2}$$

Equivalent resistance

 $R_{\rm tot} = R_1 + R_2$

See PC 6

Insulation

 $R_{\rm tot} = R_1 + R_2$

 $R = \frac{w}{S\lambda}$

Adding more layers will decrease the heat flow

Thick layers with low conductivity

Complementary approach: thermal transmittance [W/m²/K]

$$U = \frac{1}{SR} = \frac{\lambda}{w}$$

$$\phi = J \times S = \frac{T_{\rm in} - T_{\rm out}}{R}$$
$$J = U \times (T_{\rm in} - T_{\rm out})$$

Wall insulation Aim U ~ 0.2 W/m²/K

Pipe insulation Current regulation : T < 60°C

$\begin{array}{l} \lambda \text{ is actually} \\ \text{temperature dependent } ! \end{array}$

Insulation – trade off

$$R_{\text{tot}} = R_1 + R_2$$
 $R = \frac{w}{S\lambda}$ $U = \frac{1}{SR} = \frac{\lambda}{w}$

Return on investment

Increasing insulation thickness

Window: not just insulation !

+ Transparent to visible light+ Transparent to solar heat

U: thermal transmittance Ug = glazing only Uw = full window

S, g, F: Solar IR transmission

LT : Optical transmission

Parallel resistance

We want to maintain a different temperature inside as compared to outside. What is the heata flow that must be sustained?

 $\phi_1 = \frac{T_{\rm in} - T_{\rm out}}{R_1} \qquad \phi_2 = \frac{T_{\rm in} - T_{\rm out}}{R_2}$

Heat flows

Flow additivity

 $\phi_1 + \phi_2 = \phi$

$$\phi = (T_{\rm in} - T_{\rm out}) \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

Equivalent resistance

$$R_{\rm tot}^{-1} = R_1^{-1} + R_2^{-1}$$

Thermal bridge

Practical application: where is the thermal bridge?

Why is insulation difficult

Law of the minimum

"You are dealing, you see, with the law of the minimum [...] Growth is limited by that necessity which is present in the least amount. And, naturally, the least favorable condition controls the growth rate."

Liet Kynes, imperial planetologist

$$\phi = (T_{\rm in} - T_{\rm out}) \left(\frac{1}{R_{\rm wall}} + \frac{1}{R_{\rm window}}\right)$$

If the window is already more insulated than the wall, there is no point adding a triple glazing...

Periodic forcing

Impact of external variations ?

 $\mathbf{J} = -\lambda \boldsymbol{\nabla} T$

 $D \Lambda T$

 ∂T

Periodic forcing – skin depth

Impact of external variations ?

Dephasing

 $\mathbf{J} = -\lambda \boldsymbol{\nabla} T$

 ∂T

Thermal inertia

Earth walls

 $\rho = 1600 \text{ kg/m}^3$

C = 1 kJ/kg/K

 $\lambda = 0,65 \text{ W/m/K}$

Day-night cycles $\rightarrow \delta$ = 10 cm

Seasonal cycles $\rightarrow \delta$ ~1 m

 $\delta =$

 2λ

 $\omega \rho c$

Ground heat exchanger (GHE)

What happens when 2 systems at 2 different temperatures are put in contact?

 T_2

 T_1

Right after contact

Temperature quench - effusivity

After a long time

What happens when 2 systems at 2 different temperatures are put in contact?

 $J(0^+) = J(0^-) \qquad J \sim -\lambda \frac{\Delta T}{\delta}$ $T_{\text{contact}} = \frac{e_1 T_1 + e_2 T_2}{e_1 + e_2}$ Effusivity T_1 T_2 $e = \sqrt{\rho c \lambda}$ The material with the largest effusivity Before contact Right after contact imposes its temperature

Temperature quench - effusivity

Thermal comfort

	ρ kg/m ³	c _p J/kgK	k W/mK	ρc _p J/m ³ K*10 ⁶	a mm²/s	e w/cm²/k/s ^{0.5}
air	1.3	1004	0.03	0.001	19.2	0.0006
wool	100	1500	0.04	0.15	0.23	0.007
balsa wood	130	2301	0.05	0.30	0.17	0.012
polyvinyl chloride	1500	1674	0.17	2.51	0.07	0.06
skin	1000	2500	0.40	2.50	0.16	0.10
quartz	2200	745	1.40	1.64	0.85	0.15
silicon oxide	2200	745	1.40	1.64	0.85	0.15
water	1000	4184	0.60	4.18	0.14	0.16
ice	917	4217	2.10	3.87	0.54	0.28
aluminum oxide	2200	778	18	1.71	10.5	0.56
stainless steel (CrNi)	8000	502	15	4.02	3.73	0.78
tin	7310	226	61	1.65	36.9	1.00
silicon	2330	703	126	1.64	76.9	1.44
iron	7870	448	72	3.52	20.4	1.59
aluminum alloy (7079)	2740	795	121	2.18	55.5	1.62
aluminum	2698	921	226	2.48	91	2.37
gold	19300	128	320	2.47	129	2.81
copper	8940	385	396	3.44	115	3.69

Thermal comfort

	ρ kg/m ³	c _p J/kgK	k W/mK	ρc _p J/m ³ K*10 ⁶	a mm²/s	e w/cm ² /k/s ^{0.5}
air	1.3	1004	0.03	0.001	19.2	0.0006
wool	100	1500	0.04	0.15	0.23	0.007
balsa wood	130	2301	0.05	0.30	0.17	0.012
polyvinyl chloride	1500	1674	0.17	2.51	0.07	0.06
skin	1000	2500	0.40	2.50	0.16	0.10
quartz	2200	745	1.40	1.64	0.85	0.15
silicon oxide	2200	745	1.40	1.64	0.85	0.15
water	1000	4184	0.60	4.18	0.14	0.16
ice	917	4217	2.10	3.87	0.54	0.28
aluminum oxide	2200	778	18	1.71	10.5	0.56
stainless steel (CrNi)	8000	502	15	4.02	3.73	0.78
tin	7310	226	61	1.65	36.9	1.00
silicon	2330	703	126	1.64	76.9	1.44
iron	7870	448	72	3.52	20.4	1.59
aluminum alloy (7079)	2740	795	121	2.18	55.5	1.62
aluminum	2698	921	226	2.48	91	2.37
gold	19300	128	320	2.47	129	2.81
copper	8940	385	396	3.44	115	3.69

Holding space shuttle tiles at 2200 degrees

Sum up

Lecture 8 – thermal energy

I. Overview of heat consumption (what, why, how much ?)

II. Heat conduction

- Heat transfer & heat equation
- Insulation 101
- Thermal energy management

III. Heat generation

- Geothermal energy
- Heat pump
- Combined heat and power generation

Three direct consequences :

- Thermal resistance
- Thermal inertia
- Thermal comfort

Two indirect consequences :

- Thermal energy transmission
- Thermal energy storage

Heat distribution

Small difference bewteen conducting and insulating material

Wood

Granit

Glass

1

10000 1000 Distance (km) 100

100

Transmission capacity (MW)

10

Conductors

Steel

Silver

Copper

Brass

1000

By constrat,

10000

10⁶ x D [m²/s] Insulator Concrete 0,42 0,45

1,10

0,58

10⁶ x D [m²/s]

12

171

114

33
Heat (and cold) storage

INNOVATION OUTLOOK THERMAL ENERGY STORAGE

Heat storage technologies

Table 6: Energy capacities, power, efficiency and storage time of thermal energy storage technologies

TES technology	Capacity kWh/t	Power kW	Efficiency (%)	Storage time	Cost (USD/kWh)
Hot water tank	20-80	1-10 000	50-90	day-year	0.1-0.13
Chilled water tank	10-20	1-2 000	70-90	hour-week	0.1-0.13
Aquifer	5-10	500-10 000	50-90	day-year	Varies
Borehole	5-30	100-5 000	50-90	day-year	Varies
PCM-general	50-150	1-1 000	75-90	hour-week	13-65
lce storage tank	100	100-1 000	80-90	hour-week	6-20
Thermal-chemical	120-150	10-1 000	75-100	hour-day	10-52

Compairing TES technologies

IREN/

INNOVATION OUTLOOK THERMAL ENERGY STORAGE

Heat generation - alternatives

Standard fuels Mostly gas

Renewable heat source

Solar (Lecture 6) Geothermal

Power to heat Toaster (not addressed) Heat pump

Lecture 8 – thermal energy

I. Overview of heat consumption (what, why, how much ?)

- II. Heat conduction
 - Heat transfer & heat equation
 - Insulation 101
 - Thermal energy management

III. Heat generation

- Geothermal energy
- Heat pump
- Combined heat and power generation

Geothermal ressource

Steven Earle, Physical Geology

Gradient close to the surface : 30 K / km

Heat flux

```
J_r(R_T) = 87 \,\mathrm{mW/m^2}
Total power: \phi_{\mathrm{tot}} = 44 \,\mathrm{TW}_{_{43}}
```

Geothermal ressource: origin

 $rac{\partial u}{\partial t} + {
m div} {f J} = {\cal P}$ Heat produced by Radioactive decay

 $\left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r}\right)T = \frac{1}{D}\left(\frac{\mathcal{P}}{\rho c} - \frac{\partial T}{\partial t}\right)$

$$= 44 \,\mathrm{TW}$$

Now with a source term

Heat flow at the surface $\mathbf{J} = -\lambda \mathbf{\nabla} T$

Temperature profile: two contributions

 $\phi_{\rm radioactivity} \simeq 30 \, {\rm TW}$

 $\phi_{\rm tot}$

 $\phi_{\rm cooling} \simeq 14 \, {\rm TW}$

Earth cooling : -5 to 10 K / Myr

Geothermal ressource distribution

Low temperature geothermy

Ile de France region:

36 installations, 200 000 housings, 500 000 persons 1,5 TWh/yr

Low temperature geothermy

×

n 2 4 ADEME

Géosciences pour une Terre durable

Low temperature geothermy

Uneven distributions

Cold bubbles ? (not as bad as expected)

Heat distribution

8 Kilomètres

Geothermal installed capacity

9,8%

Solar

Kenya

Other 1.025

Source: ThinkGeoEnergy Research (2021)

High temperature geothermy

Dry steam

(1904, Lardarello, Italy)

Most of currently operating plants

Binary Condenser Generator Turbine Heat exchanger Wellhead Ground surface

Subsurface injection Isobutane Water

Most of currently planned plants

Wikimedia Commons

First geothermal plant

Example of geothermal power plant

Nesjavellir Geothermal Power Station

Commissioned 1990 as thermal plant upgraded to power plant in 1998 further improved capacity

25 wells, down to 2km Water and steam 190°C ~1 000 L / s

Flash 120 MWe + 1000 L hot water @85°C / second

Geothermal efficiency

Lecture 8 – thermal energy

I. Overview of heat consumption (what, why, how much ?)

- II. Heat conduction
 - Heat transfer & heat equation
 - Insulation 101
 - Thermal energy management
- III. Heat generation
 - Geothermal energy
 - Heat pump
 - Combined heat and power generation

Heat pumps

 Q_C Heat from the cold source $S_{\rm in} = Q_C / T_C$ Entropy coming along Q_H Heat given to the hot source Such that $S_{\text{out}} = Q_H / T_H = S_{\text{in}}$ $Q_H > Q_C$ Leading to $W = Q_H - Q_C$ Energy conservation Heat pump "efficiency"

$$\operatorname{COP}_{\operatorname{heat}} = \frac{Q_H}{W} = \frac{1}{1 - \frac{T_C}{T_H}} = \operatorname{COP}_{\operatorname{cool}} + 1$$
55

Refrigerator "efficiency"

$$\operatorname{COP}_{\operatorname{cool}} = \frac{Q_C}{W} = \frac{1}{\frac{T_H}{T_C} - 1}$$

Heat pumps – generic idea

(From) External reservoir:

Ground source heat pumps

(To) Internal reservoir:

Air

https://www.ehpa.org/technology/types-of-heat-pumps/

Heat pump in real conditions

Energy & Environmental Science

Cite this: Energy Environ. Sci., 2012, 5, 9291

www.rsc.org/ees

A review of domestic heat pumps

Iain Staffell, *a Dan Brett,^b Nigel Brandon^c and Adam Hawkes^d

Received 10th March 2012, Accepted 20th September 2012 DOI: 10.1039/c2ee22653g

Heat pump in practice

https://heatpumpingtechnologies.org

Ideal cycle :

Heat release by condensation

 $T_{\rm high} \ge T_{\rm in}$

Adiabatic decompression

Heat intake by evaporation

 $T_{\rm low} \leq T_{\rm out}$

Adiabatic compression

Heat pump in practice

https://heatpumpingtechnologies.org

Real cycle :

Heat release by condensation

Throttling

Joule-Thomson (isenthalpic) process

Heat intake by evaporation

With overheating

Adiabatic compression Now without liquid droplets

Temperature

Refrigerant wish list

Thermodynamic properties

Low boiling T, low freezing T, high critical T Reachable saturation pressure High density, large latent heat Pressures slightly above 1bar

Chemical properties

No reaction with oil / lubricants Leakage detection? Toxicity

Physical properties

Low viscosity High thermal conductivity Warming & Ozozon depletion potentials [working T] [working p] [low mass flow] [avoid air inputs]

Refrigerant – "Freon"

Refrigerant – "Freon"

Global warming potential 1430

Ozone Depleting Potential 0

Global warming potential

< 4

Lecture 8 – thermal energy

I. Overview of heat consumption (what, why, how much ?)

- II. Heat conduction
 - Heat transfer & heat equation
 - Insulation 101
 - Thermal energy management
- III. Heat generation
 - Geothermal energy
 - Heat pump
 - Combined heat and power generation

CHP - principle

Main idea Try not to waste so much heat !

Source: DOE Energy Information Administration Annual Energy Review 2007

Two options

Topping cycle system

Collect heat normally wasted over electricity production

Bottoming cycle system

Turn wasted heat from industrial processes into electricity

CHP – equivalent cycle

Conventional power plant

Providing heat at a higher temperature than normal output reduces the work produced by the power plant

As if part of this work was used to power a heat pump !

CHP – efficiency (?)

Source: IEA analysis, USEPA, 2008.

CHP - efficiency

David MacKay

+ simultaneous use of heat and power

CHP - implementation

CHP requirement

- A ratio of electricity to fuel costs of at least 2.5:1;
- Relatively high requirements for heating and / or cooling (e.g. annual demand for at least 5 000 hours);
- The ability to connect to the grid (if present) at a reasonable price with the availability of back-up and top-up power at reasonable and predictable prices;
- Availability of space for the equipment and (for non-DHC related systems) short distances for heat transport.

Feature	CHP - industrial	CHP - commercial / institutional	District heating and cooling
Typical customers	Chemical, pulp and paper, metallurgy, heavy processing (food, textile, timber, minerals), brewing, coke ovens, glass furnaces, oil refining	Light manufacturing, hotels, hospitals, large urban office buildings, agricultural operations	All buildings within reach of heat network, including office buildings, individual houses, campuses, airports, industry
Ease of integration with renewables and waste energy	Moderate - high (particularly industrial energy waste streams)	Low - moderate	High
Temperature level	High	Low to medium	Low to medium
Typical system size	1 - 500 MWe	1 kWe - 10 MWe	Any
Typical prime mover	Steam turbine, gas turbine, reciprocating engine (compression ignition), combined cycle (larger systems)	Reciprocating engine (spark ignition), stirling engines, fuel cells, micro- turbines	Steam turbine, gas turbine, waste incineration, CCGT
Energy/fuel source	Any liquid, gaseous or solid fuels; industrial process waste gases (e.g. blast furnace gases, coke oven waste gases)	Liquid or gaseous fuels	Any fuel
Main players	Industry (power utilities)	End users and utilities	Include local community ESCOs, local and national utilities and industry
Ownership	Joint ventures/ third party	Joint ventures/ third party	From full private to full public and part public/ private, including utilities, industry and municipalities
Heat/electricity load patterns	User- and process-specific	User-specific	Daily and seasonal fluctuations mitigated by load management and beat storage

Example of CHP

Juengling

AMERICA'S OLDEST BREWERY.

Biogas from brewery wastewater treatment + natural gas

Electricity : 400 kW (=20% brewery consumption) Heat : 545 kW

Heat used for

wastewater preheating brewery's pasteurization process

"2G Energy inc. was selected to supply and install a fully containerized agenitor 212 thermodynamically optimized MAN-based engine with 400 ekW/h or 3,320 MW p.a. electrical power and 474 kWh/th thermal power output."

District heating

Typical input

- waste heat from thermal power stations •
- heat obtained from waste incineration •
- useful waste heat from industrial processes ٠
- natural geothermal heat sources ٠
- fuels difficult to manage •

(wood waste, peat, straw, or olive stones.)

First modern DH: Lockport, New York in 1877

Example of District heating

Nuclear Power Plant in Beznau (Switzerland)

2 x 365 MW PWR reactors

Commissioned in 1969

REFUNA District heating network Operating since 1984

31 km transmission lines

100 km distribution lines

2400 consumers

Capacity : 76 MW_{th}

Annual prod : 142 GWh_{th}

- Hot feed

Cooled-down return

Standby heating plantsBooster pump stations

Take home messages

Thermal physics 101 λ, D, R, δ, e $\mathbf{J} = -\lambda \nabla T$ $\frac{\partial T}{\partial t} = D \Delta T$ Insulation $\phi = (T_{in} - T_{out}) \left(\frac{1}{R_1 + R'_1} + \frac{1}{R_2}\right)$ Thermal cycles & Ts chart

Thermal energy management

Usage

Transport

Storage

Thermal energy perspectives

Type of TES	TES technology	Range of capacities	Range of power	Operating temp- erature	Round-trip efficiency	Storage period	Energy density	Lifetime (years or no. of cycles)
Sensible	Water tank	kWh to 1 GWh	kW to 10 MW	10 to 90°C	50 to 90%	Hours to months	15-80 kWh/ m ^{3 (1)}	15-40 years
	Underground	MWh to GWh	MW to 100 MW	5 to 95°C	up to 90%	Weeks to months	25-85 kWh/m³	50 years
	Solid state	10 kWh to GWh	kW to 100 MW	-160 to 1 300°C	>90%	Hours to months	0.4-0.9 kWh/ m ^{3.} K (heat capacity)	> 5 000 cycles
	Molten salts	MWh to 5 GWh	100 kW to 300 MW	265 to 565°C ⁽⁴⁾	>98%	Hours to days	70-200 kWh/m³	> 20 years

Type of TES	TES technology	Range of capacities	Range of power	Operating temp- erature	Round-trip efficiency	Storage period	Energy density	Lifetime (years or no. of cycles)
Latent	Ice thermal energy storage	kWh to 100 MWh	kW to 10 MW	-3 to 3°C	>95%	Hours to days	92 kWh/ m ³	> 20 years
	Sub-zero temperature PCM	kWh to 100 kWh	kW to 10 kW	down to -114°C	>90%	Hours	30-85 kWh/m ³	> 20 years
	Low-temperature PCM	kWh to 100 kWh	kW to 10 kW	up to 120°C	>90%	Hours	56-60 kWh/m³	300- 3 000 cycles
	High- temperature cPCM	10 kWh to GWh	10 kW to 100 MW	up to 1 000°C	>90%	Hours to days	30-85 kWh/m³	> 5 000 cycles

Type of TES	TES technology	Range of capacities	Range of power	Operating temp- erature	Round-trip efficiency	Storage period	Energy density	Lifetime (years or no. of cycles)
Thermo- chemical	Chemical looping (calcium looping) (5)	MWh to 100 MWh	10 kW to 1 MW	500 to 900°C	45-63%	Months	800-1200 kWh/m³	>30 years
	Salt hydration	10 kWh to 100 kWh	N/A	30 to 200°C	50% (open systems) 60% (closed systems)	Months	200-350 kWh/m ³	20 years
	Absorption Systems	10 kWh to 100 kWh	10 kW to 1 MW	5 to 165°C	COP: 0.7-1.7	Hours to days	180-310 kWh/m ³	50 years

Type of TES	TES technology	Range of capacities	Range of power	Operating temp- erature	Round-trip efficiency	Storage period	Energy density	Lifetime (years or no. of cycles)
	CAES	10 to 1 000 MWh	10 to 1000 MW	up to 600°C	> 90% (thermal efficiency)	Hours to weeks	N/A	20-40 years
Mechanical- thermal systems	LAES	MWh to GWh	10 to 300 MW	> 300°C (heat) -150°C (cold) -196°C (liquid air)	> 90% (thermal efficiency)	Hours to months	N/A	> 25 years

Example of CHP

Plant (year built)	Energy Source	Capacity	Conversion Process	Technical Data	Efficiency (%)	Comment
Apar Industries, Ankleshwar, India (2000)	Natural gas	1.5 MW _{el}	Gas turbine	Inlet air cooling (15°C)	64	4 017 ton CO ₂ /yr avoided compared to separate production
Shanghai Pudong International Airport, China	Natural gas	$4.6 \mathrm{MW}_{\mathrm{el}}$	Gas turbine	Heat recovery steam generator 8/185 [bar/°C]	74	production
Vattenfall, Fynsverket, Denmark (2009)	Straw 150,000 ton/yr	35 MW _{el} 75 MW _{heat}	Steam turbine	Steam data 110/540 [bar/°C]	El. 33	11 MW _{heat} from flue gas condensing
Great River Energy, Spiritwood, North Dakota, USA (2012)	Lignite coal	$275\mathrm{MW}_{\mathrm{th}}90\mathrm{MW}_{\mathrm{el}}$	Steam turbine	Steam data125/541 [bar/°C]		Delivery of steam to malt plant
Sharp Electronics Kameyama manufacturing facility, Japan (2006)	Natural gas	1 MW _{el}	Molten carbonate fuel cell			Calculated to reduce CO_2 emissions with 2300 tons
EWE, Oldenburg, Germany(2008)	NA	1 kW _{el}	Solid oxide fuel cell			Residential plant
Cool Endeavour, Amsterdam, Netherlands (2011)	NA	2 kW _{el}	Solid oxide fuel cell			Building, proof of concept project
NegH Biostrom KEG, Paldau, Austria (2001)	Biogas	2×250 kW _{el} available heat 7250 MWh/yr	Gas engine		El. 37%	17% of available heat used owing to lack of heat demand

