Optical practicalities:
étendue, interferometry,
fringe localization

11.1 Introduction

In this chapter we discuss several related topics. First we consider the
flux of energy, mostly in the context of light from non-laser sources. An
important geometrical factor is the étendue. It is the étendue that we
must maximize when trying to get as much optical energy as possible
into apparatus such as a spectrometer or an optical fibre. Optical in-
struments differ in their ability to collect light, and their relative merits
in this regard are assessed by comparing their étendues.

We put this idea to use by analysing a Michelson interferometer used
as a Fourier-transform spectrometer, and we discover that it is far better
at light-gathering than a conventional (grating) spectrometer.

A property of interferometers of the Michelson type (achieving inter-
ference by division of amplitude) is that they generate localized fringes.
We take the opportunity to explain localization, where the fringes lie,
and how critical is the focusing on these fringes.

There is an insightful relationship between étendue and the number
of transverse modes occupied by the electromagnetic field. There are
further links with coherence area, with thermodynamics (entropy), and
the understanding as to why laser light is so special.

11.2 Energy flow: étendue and radiance

Consider some area element 3S that radiates optical power as shown
in Fig. 11.1. The power 3P that we can collect in a solid angle 3f2 is
proportional to 82 and to 8S cos@ (the area projected along the line of
sight). Given these dependences, we define a quantity étendue by!

8(étendue) = n? §S 82 cos 6. (11.1)
The power §P collected is now given by?
8P = B x n? 88 802 cos¥. (11.2)

If, as here, power 8P is measured in watts, the coefficient B is called
radiance;3 if 3P is measured in ‘visual’ units, weighted according to the

&S

Fig. 11.1 Power 8P is radiated from
an element of surface area 3S into an
element of solid angle 82.

1The reason for including the factor
n? (n is refractive index) will be made
clear below.

2If Bis independent of 0, the power P
is proportional to cos§. This property
is quite commonly encountered, and is
called the Lambert cosine law.

301d terminology dies hard, and B is
still sometimes called brightness.
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4Constant B means additionally that
all parts of area AS radiate equally
(apart from the cos@ factor) into all
parts of Af2.

5Textbooks usually define étendue sim-
ply as AS A2, with a small-angle ap-
proximation implied. The cos fac-
tor of eqn (11.1) is, however, conven-
tional in more careful treatments; see,
e.g., Born and Wolf (1999), §§4.8.1 and
4.8.3. By contrast, the n? factor seems
to be less usual, but its inclusion im-
proves both the mathematics and the
physics.

The presence of the numerical aper-
ture in eqn (11.4), rather than sin fmax
on its own, is just one of the neat con-
sequences of putting n? into definitions
(11.1) and (11.2). Numerical aperture
will be encountered again in §§12.5.1
and 12.6.

6Area AS may be the surface of a light
source, or an image of a light source,
or sometimes some other area, possibly
one ‘along the way’ in an optical sys-
tem. However, areas ‘along the way’
don’t radiate uniformly into Af2 save
in special cases. See problem 11.1(2).
As mentioned in sidenote 4 (this page)
we restrict attention to areas AS that
do radiate uniformly.

If a source such as a lamp has a non-
uniform radiance from different parts of
its area, or radiates unequally into dif-
ferent directions, we can, of course, at-
tempt to allow for the non-uniformity
by integrating eqn (11.2):

P= / Bn?cos0dSdf.

However, non-uniformity is likely to be
a symptom of a design fault—or an in-
appropriate choice of area for AS—and
should be removed rather than allowed
for.

sensitivity to frequency of the human eye, then B is called luminance.

For a light source of finite area, radiating into a range of directions,
eqn (11.2) can be integrated to give the total power P collected into ap-
paratus with a defined étendue. In particular, if the source* has constant
B (independent of locations within AS and directions within Af2),

P = (radiance B) x (étendue). (11.3)

If we gather light radiated symmetrically into a cone of (non-small)
semi-angle Opmax, we have (problem 11.5):

étendue = n? AS/cosOd.Q = AS(nsinfpax)?, (11.4)
in which we encounter the numerical aperture defined by
numerical aperture = (nsin 6yay). (11.5)

Although we have avoided approximating in the above, it often suffices
to make small-angle approximations, and then eqn (11.1) integrates more
simply to®
étendue ~ n2 AS AR. (11.6)

Equation (11.3) may be applied to the collection of light into an in-
strument such a spectrometer. In such a case, AS refers to the radiating
area from which light is usefully collected,® and a similar understanding
applies to the directions included within Af2.

When using a spectrometer, we shall wish to obtain strong signals
on a photographic film or an electrical photodetector. Optimizing the
power collection is to be achieved by maximizing the étendue of the
optical equipment, since (as we shall see) radiance B is not something
we can usually do much about. This motivates much of the discussion
in §§11.3-11.10.

small angles:

11.3 Conservation of étendue and radiance

When the étendue of an optical system is evaluated, using a properly
chosen area according to the understandings in sidenote 6 (this page),
it remains unchanged as the light is transformed by lenses, mirrors, or
other optical components, or passes from one medium to another:

étendue is an invariant. (11.7)

A further conservation rule follows from eqn (11.7): if an image is formed
of a source, using lenses or mirrors,

(radiance of image of source) < (radiance of original source), (11.8)

where equality holds when there is no loss of energy (insertion loss)
in the imaging system. These two conservation rules are established in
problem 11.1.
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11.4 Longitudinal and transverse modes

A light beam can be decomposed into longitudinal and transverse modes,
as was done in describing cavity modes in Chapter 8.

The étendue of a light beam is connected with the number of trans-
verse modes that are populated by its photons. The relationship is:"-8

étendue

(number of transverse modes occupied) = BV
'vac

(11.9)

A derivation of eqn (11.9) is laid out in problem 11.3.
A wave occupying a single transverse mode has a photon flux, the num-
ber of photons per second crossing some plane, given by (problem 11.2)

(photon flux) = (number of photons per mode) x dv, (11.10)

where dv is the range of frequencies occupied by the photons. The
number of occupied longitudinal modes is related to dv, in a way that
is presented in problem 11.2.

When light leaves an area AS into several longitudinal and transverse
modes, the power P(v)dv in frequency range dv is easily seen to be

étendue

Aac

P(v)8v = (number of photons per mode) ( ) hvdv. (11.11)

We take the opportunity to obtain the radiance of a source radiating
into frequency range dv:

P(v)8 2 :
= ﬁ = (number of photons per mode) lc/_z hvdv. (11.12)

Expressions (11.9), (11.11) and (11.12) are all to be doubled if two
polarizations are excited.

B(v)dv

11.5 Etendue and coherence area

Coherence area has been introduced in Chapter 9. The coherence area
is related to the solid angle within which light arrives,® as is shown in
Fig. 11.2: if angles are small, AS = A\2/A.

Suppose that light is incident onto the area shown in Fig. 11.2, and
arrives uniformly within solid angle Af2. Then (small angles)

(étendue of light falling on

.2 242 _ 2
one coherence area AS ) =n°ASAR =nXN" = X, (11.13)

This result is independent of the illuminating geometry and of the re-
fractive index of the medium; everything has cancelled out.

Comparing eqns (11.9) and (11.13), we see that whenever we seek to
collect light falling within a single coherence area we are in fact aiming to
receive no more than a single transverse mode. A simple interprétation
of this idea is explored in problem 11.7.10

7Equation (11.9) represents a purely
geometrical relationship, so it applies to
light of a single polarization. If we con-
cern ourselves with unpolarized light,
the number of occupied modes is doub-
led.

8A Gaussian beam occupies a single
transverse mode. A direct check that
it has étendue A2, (with happy choices
of definition for AS and Af?) is made
in problem 11.4.

9Small—:mgle expressions are used here
for simplicity. An equivalent result is
correct for large angles, as mentioned
below.

width of
coherence
area A/

Fig. 11.2 This diagram shows a beam
of light in cross section. It arrives at
some plane within a range of angles
Oinc and in consequence the coherence
area has width A\/6i,c. Something simi-
lar happens in directions at right-angles
to the paper. Taking both directions
together, the light arrives within solid
angle A{?2 and yields a coherence area
AS =\ YA

10The derivation of expression (11.13)
for coherence area has not taken de-
tailed account of any particular geo-
metry in the incident light beam; it is,
therefore, less precise than the treat-
ments in Chapters 9 and 10. However,
there is an inevitable agreement in or-
der of magnitude.
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11 A similar result can, of course, be ob-
tained by using diffraction theory. The
derivation given here is interesting for
the rather different route that it fol-
lows. The reasoning is outlined in prob-
lem 11.5.

27his equality should ‘feel’ obvious.
The van Cittert—Zernike theorem—
which this is—should begin to feel ob-
vious also ....

131 aser light is dangerous to eyes be-
cause it (usually) occupies a single
transverse mode.

4psa light beam passes through some
region of space, the photons that were
present are swept out and replaced by
others. So one microstate is succeeded
by another, and what we observe over
an ordinary timescale is a time aver-
age, equivalent to an ensemble average
over microstates. All the conditions for
kg In W to represent entropy are there-
fore met.

15 Aside: There is a similarity to the
Liouville theorem in classical parti-
cle mechanics (Mandl 1988, p.208).
A pretty discussion of the Liouville
theorem is given by Penrose (1989),
especially p. 235.

161ve made a bald statement for em-
phasis. More correctly: a lens can’t
reduce the number of occupied micro-
states while conserving the number of
photons, because that would reduce W.
Entropy can be increased if photons
are scattered into additional directions.
And the entropy of the light beam—
though not that of the universe—can be
reduced if photons are simply absorbed.

) 1)
17wehavew=nm =1,
(9: — )lny!

whatever the va.ll:e of n; for the one
state that’s occupied.

Even in a single mode, photons can
be ‘loaded’ into a variety of quantum
states, see e.g., Loudon (2000), Chap-
ter 5. Some randomness is therefore
possible if the quantum state is chang-
ing. It seems best to treat such ran-
domness as a quantum-mechanical phe-
nomenon different in principle from en-

tropy.

We have already seen an application of eqn (11.13). In the Hanbury
Brown-Twiss experiment, it was necessary to observe fluctuations of
intensity within a single coherence area. Problem 10.17 has shown that
the experiments did precisely that.

Before we leave the present topic, we give a version of eqn (11.13)
applicable to non-small angles. Let light be collected by a circular
lens and focused into a cone with semi-angle 6p,.,, numerical aperture
(nsinfpax). The coherence area in the focus is a circular patch of area
AS and radius r where, by the inverse of eqn (11.4),!!

. 2
étendue Alac

- m(n sin Opmax)? - m(nsin Opmax)?’

AS

_ Avac
= (11.14)

Expressions (11.14) for AS and r also give us the dimensions of the
area to which light can be focused if it occupies a single transverse
mode.!2 If several transverse modes are excited (randomly, with nothing
specially engineered), the achievable focus area will be increased by a
factor equal to the number of occupied transverse modes. With this
understanding, results (11.14) are of immediate relevance to the reading
of a compact disc (problem 11.6) and the supply of power into an optical
fibre (problem 14.2).13

11.6 Field modes and entropy

Consider a light beam that has some number of photons distributed
among field modes, longitudinal and transverse. Like any other system
of particles in quantum states, it must have entropy kg In W, where W
is the number of microstates in the macrostate and kg is the Boltzmann
constant. A chaotic (random, non-laser) light beam may occupy any of
a large number of microstates that are macroscopically similar, so it has
randomness and carries with it a non-zero entropy.'4

The conservation laws for étendue and radiance stated in eqns (11.7)
and (11.8) have a new interpretation: they tell us that a lens (or other
optical component) doesn’t change the number of field modes'® occupied
by photons; equivalently it doesn’t alter the entropy.'®

The prohibition on changing (in particular reducing) entropy-étendue
applies with equal force to optical arrangements that don’t form an
image, e.g. where light is concentrated in a caustic.

By contrast with the above, a beam with only a single mode occupied
can have no kg In W randomness, so it should not carry entropy.!”

The idea that a (chaotic) light beam carries entropy justifies assump-
tions that were unexplained earlier in this book. It was assumed in
Chapter 9 (particularly §9.15) that for random (non-laser, chaotic) light
the only way to obtain a desired degree of coherence is to filter away all
of the light that’s doing things we don’t want. This gloomy suspicion is
now confirmed. Light in the ‘wrong’ field modes can’t be rescued (some-
how diverted into the ‘right’ modes) without diminishing the entropy
and so violating the Second Law; it has to be discarded. In achieving
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transverse coherence, we must throw away light from most of the source’s
area, or travelling in most directions, or both, until we have reduced the
étendue to A\2,.. It’s a high penalty. Likewise, to obtain a desired de-
gree of longitudinal coherence (coherence time) we have to discard (by
filtering) frequencies that are unwanted. Just how high these penalties
are is a matter examined in problem 11.8.

11.7

11.7.1 Radiance of a black body

The radiance B(v)dv of a black body, for emission into frequency range
dv, can be obtained at once from eqn (11.12):18

Radiance of some optical sources

1

) 202
radiance B(v)dv = Tl 1 2 hv dv. (11.15)
Both polarizations are included.!®

In eqn (11.15), the Planck distribution (e"*/*8T — 1)~! is the value
taken by the number of photons per mode when we have thermal equi-

librium. Some representative numerical values are given in Table 11.1.20

11.7.2 Radiance of a gas-discharge lamp

The radiance of a black body represents a standard against which it
is appropriate to compare the radiances of other light sources. In par-
ticular, we may ask whether a lamp emitting a line spectrum is or is
not ‘brighter’ than a black body of comparable temperature—and what
would be a ‘comparable temperature’?

If we are to receive an intense line from a gas discharge, the discharge
must be ‘optically thick’ at the middle frequencies of the spectral line.
Otherwise, we could add more radiating gas ‘behind’ the discharge and
we would be able to see extra light from that added gas through the
original discharge. In an optically thick discharge, photons emitted in
the middle of the discharge have a high chance of being absorbed by
lower-state atoms before they can travel to the walls. There is fre-
quent exchange of energy between atoms and photons, resulting in an
approximation to local thermodynamic equilibrium within the bulk of
the discharge; atoms acquire a Boltzmann distribution (and photons a
Planck distribution) with a temperature Ty. This temperature is called
the ‘distribution-over-states’ temperature.

At the middle of a spectral line, the considerations just given mean
that the intensity we receive approximates to that of a black body at
temperature Ty. For frequencies away from line centre, the atoms radiate
less intensely, and they also absorb less intensely, so the mean free path
for photons between absorptions is greater than at line centre. A point is
reached where that mean free path is greater than the dimensions of the
discharge, and the discharge then becomes ‘optically thin’. The spectral
line’s emitted power falls with further frequency shift, following a profile

18 There is a ‘Lambertian’ dependence
of the power radiated upon cos 6, which
is not on display here because it has
been included in the definition (11.2)
of B.

19Radiance is here defined as in
eqn (11.2), .with a factor n2. The
fact that there is no n2? on display in
eqn (11.15)—it has cancelled—provides
yet another reason why we favour defin-
ing things as in §11.2.

20These numerical values should be
contrasted with the number of photons
per mode in the output from a modest
laser, as calculated in problem 10.20.

wavelength T =2000K T =6000K

4358nm 6.8 x 1078 0.41%
633nm 1.2 x 1075 2.32%
780 nm 9.9 x 10~3 4.85%
850 nm 21 % 10~4 6.33%
1.3pm 4.0 x 1073 18.8%

Table 11.1 The number of photons per
mode for black-body radiation of two
different temperatures.
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21Discharge physics is more compli-
cated than this ‘potted’ account sug-
gests. In particular, there is usually a
region near the walls of the discharge
where the gas is cooler. This cooler gas
has its own Ty, lower than that for the
bulk of the discharge. Photons near line
centre come to equilibrium at this lower
T4 on their way out while light a lit-
tle away from line centre (outside the
Doppler width for the cooler gas) does
not. We have a case of ‘self-reversal’.
Such effects are described by Wharmby
(1997).

22por a description of the basics of the
device we refer the reader, e.g., to Fox
(2001).

23The semiconductor is, therefore, op-
tically thin, reabsorbing little of the
emitted light. The timescales are
given here because they are consid-
erably shorter than those applying in
a typical gas discharge, and result in
a somewhat different way of thinking
about what is happening.

The semiconductor almost always
has a ‘direct’ band gap, so that the
emission or absorption of photons is not
accompanied by creation or absorption
of phonons.

that would have applied to the entire spectral line if the discharge had
been thin at all frequencies.

As a rough rule of thumb, the distribution-over-states temperature
for an intense discharge is about 6000K; so a spectral line is at best
about as bright (radiance, photons per mode) as sunlight of the same
frequency.?! A very clear and useful account of discharge physics is given
by Wharmby (1997).

11.7.3 Radiance of a light-emitting diode (LED)

Passage of a current through a suitably constructed diode results in a
region of semiconductor where there is a surplus of electrons at the bot-
tom of the conduction band and, likewise, a surplus of empty states at
the top of the valence band.?? Electrons in the conduction band come
to thermal equilibrium with phonons and acquire a thermal distribu-
tion with a temperature equal to the lattice temperature (roughly room
temperature). Relaxation to this distribution is fast, timescale about
10~!'s. The electrons then fall to empty states in the valence band
with a radiative lifetime of order 1-10ns. Once in the valence band they
again thermalize (timescale 10712 s) so that the states they entered at
the top of the valence band remain empty.?> These thermal effects mean
that the photons emitted cover an energy range of roughly 2kT.

LEDs have a variety of constructions according to the purpose for
which they are made. However, a diode intended for feeding an optical
fibre might have an emitting area of 50 pm square radiating 1 mW at a
wavelength of 850 nm into a numerical aperture of 1. Such an LED emits
light with 3 x 10~2 photons per mode. We are again finding radiances
roughly comparable to that for sunlight.

11.8 Etendue and interferometers

Any interferometer interferes light waves, obtained by dividing a beam
of incident light into two (or more), either by division of wavefront or by
division of amplitude. Consider first the case of division of wavefront,
for which the paradigm is the Young slits. It’s necessary to make the
two divided beams coherent with each other, at least in one direction
(the direction across the slits in a Young-slits case). To make discussion
simple, imagine first that the beams must be coherent with each other
in both transverse directions. In that case the light must be filtered, by
narrowing its width and its range of directions, until it occupies only a
single transverse mode. This filtering is known (problem 11.8) to result
in only a small usable energy flow (for a non-laser source).

The penalty just introduced has arisen because the light beam has
been made coherent in both transverse directions. We might expect
that a Young-slits experiment, in which coherence is needed in only one
direction, would be less disadvantageous: elongating the source from a
pinhole to a slit as in Fig. 3.10 permits an increased flow of energy. This
idea is explored in problem 11.9. The surprising result is that observation



by eye is made more comfortable, but there is little improvement in
visual brightness of the fringe pattern.

By contrast, an interferometer exploiting division of amplitude (the
Michelson and its relatives) sets no requirement on transverse coherence.
There is no need to perform any filtering down to one or a few transverse
modes.?* The bright fringes can be as bright as light received directly
from the source without the interposition of the interferometer (if we
ignore insertion loss).

Suppose we are to design an interferometer to make an optical mea-
surement, perhaps to measure the refractive index of a gas. We could
adapt a Young-slits apparatus, and we would end up with something
resembling a Rayleigh refractometer. We could adapt a Michelson inter-
ferometer and end up with something like a Jamin refractometer. Of
these two approaches, the second is far more practical, in terms of the
optical power available in the fringes.?®

The generalization is obvious:

e If you have any choice in the matter, design your interferometer
to use division of amplitude.

11.9 Etendue and spectrometers

We consider here the light gathering by an optical apparatus such as a
spectrometer: the larger we can make the étendue, the more energy we
can collect and use.

In a spectroscopic instrument there is a trade-off between étendue and
resolution. In the case of a grating spectrometer (problem 11.10), widen-
ing the entrance slit increases the étendue (by increasing area AS) but
degrades the resolution, and conversely. A similar trade-off applies to
other instruments, though for reasons that may not be quite so obvious.

Etendue further provides us with a means of comparing the merits of
one instrument with another. We can ask: which is likely to be better for
examining a weak source, a grating spectrometer or a Fourier-transform
(Michelson-type) spectrometer? The answer (problems 11.14 and 11.15)
may be surprising. A Michelson interferometer or a Fabry—Perot is a
whole-fringe instrument possessing the properties (problem 11.15):

(solid angle of acceptance) x (chromatic resolving power) = 27 (11.16)
and

(étendue) x (chromatic resolving power) = 2r x (area of a mirror).
(11.17)
These properties represent a standard of comparison for the light gath-
ering of a spectroscopic instrument. A Fourier-transform spectrometer
is in line with this standard, while (it turns out) a comparable grating
spectrometer falls short of it by a factor of order 200 (problem 11.14).
This is the context for the ingenious measures described in §4.9.6: the
grating spectrometer is coming from a long way behind, and there is

correspondingly a great deal that might be gained from improving it.
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24T here is, of course, a requirement:
that the frequency range of the light
be small enough that the coherence
length encompasses the intended path
difference. However, this requirement
is usually met by accepting the use of a
limited range of path differences, rather
than by filtering the light.

25This discussion is centred on the idea
that we are going to use a gas-discharge
lamp as light source. A laser gives high
intensity in a single transverse mode,
and a Rayleigh refractometer illumin-
ated by a laser would work well. How-
ever, there is still no positive advan-
tage in pursuing the wavefront-division
route, so we would be wise to choose the
greater versatility of the Jamin—which
is also a slightly simpler instrument.

It might be objected that the ‘text-
book’ description of the Rayleigh re-
fractometer incorporates some elegant
ideas, such as a set of fiducial fringes to
assist measurement, which are not part
of a ‘textbook’ Jamin. This, however,
is to miss the point. Apparatus design
is not set in stone, and there is nothing
to prevent our hybridizing the designs
to exploit the best features of both—or
indeed of others. Excellent descriptions
of the Rayleigh and Jamin designs may
be found in Born and Wolf (1999).
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Fig. 11.3 Ray paths through a Michel-
son interferometer, compared with
similar paths taken by light that is re-
flected at the two surfaces of a parallel-
sided slab. The right-hand mirror of
the Michelson, and the light rays to
and from it, are shown mirror-imaged
by the beam splitter.

To make the diagrams comparable,
the ‘slab’ has been represented as two
reflecting—or part-reflecting—surfaces
with no refraction at the boundaries.
The intention is to show that the inter-
ferometer is geometrically equivalent to
the slab, without reproducing all the
details of a real slab.

11.10 A design study: a Fourier-transform
spectrometer

The apparatus is a Michelson interferometer as described in §10.7. Our
design study of it is pursued via problems 11.11-11.16, which discuss the
light gathering (étendue) of the instrument, the resolution that can be
achieved, and the trade-off between the two. The whole-fringe property
of the interferometer, mentioned in §11.9, is derived in problem 11.15.

We have another agendum also in providing problems 11.11-11.16.
There seems usually to be little time in a physics degree course for teach-
ing the principles by which a piece of hardware (optical or otherwise)
is designed. The author regards this as regrettable. It happens that
the Fourier-transform spectrometer provides a rather good case study,
where one can start from a blank sheet of paper and the relevant physics,
and end up with a fully practical design for a piece of equipment.

11.11 Fringe localization

Any interferometer that exploits interference by division of amplitude
(as in a Michelson interferometer) generates fringes that are localized.
This may make the setting-up of the interferometer seem a less straight-
forward business than that for a division-of-wavefront arrangement such




as Young’s slits. However, the reasoning of §11.8 shows that there is a
big advantage in energy gathering to be gained from using division of
amplitude: localization, and the dealing with it, is a small price to pay.
But, of course, we do have to understand localization: what it means;
where the fringes are formed; and how critical is the focusing on them.

We shall restrict attention here to the case where a Michelson interfer-
ometer has its mirrors ‘parallel’. Representative optical paths through
the system are shown in Fig. 11.3. The same diagram shows rays reflec-
ted from a parallel-sided slab, to indicate that the ray geometry in the
interferometer is the same as that for the simpler case of the slab.

For light following the paths shown, the optical path difference is
n 2z cos 0, where 0 is the angle made by the ray paths inside the slab,
z is the separation of the reflecting surfaces and n is the refractive index
of the medium between the reflectors. The interference condition? is

condition for dark fringe: ~ n2xcosd = (p+ 3)Avac- (11.18)

Given that the reflecting surfaces are parallel, z is being held constant.
We also consider n and Ay, to be constant. Then the phase difference
between the two interfered light beams is controlled by cosé only.?”
To achieve good fringes, we must ensure that light ending up at a given
place all has the same value of cos§. What we need is shown in Fig. 1.3:
a lens focused for infinity gathers all light travelling in a single direction
and concentrates it in a single place.2®

The analysis just given may seem rather abstract. It also gives us no
idea of tolerances: the focal plane of the lens is the best place to look for
fringes, but how critical is it to look just there? To investigate, we pro-
ceed by means of a series of diagrams. Figure 11.4 shows what happens
if a pair of reflecting surfaces (which we’ll call a slab) is illuminated by
light from a monochromatic point source at S. Light reflected from the

= ~

Y
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26 Comment: If we had a glass slab
in air, there would be a phase change
of m at one reflection or the other,
and (p + —21-) would be replaced by p
in eqn (11.18). However, our drawing
of a slab is given to simplify the geo-
metry while analysing the workings of
a Michelson interferometer. The mir-
rors of the Michelson are likely to be
identical to each other, so there should
be no phase change of 7 here. (The
physics of the beam splitter is another
matter ....)

27This accounts for the description of
these fringes as fringes of equal inclina-
tion.

28y may help to state that the interfer-
ometer with mirrors ‘parallel’ acts as an
angular filter, with energy transmission
dependent upon angle 8. We display
this behaviour by following the inter-
ferometer by an angular selector, so we
separate out light that has been filtered
in the different ways.

Fig. 11.4 A point source S illum-
inates a slab whose surfaces are part-
reflecting, part-transmitting. Light tra-
velling towards top right appears to
have come from the two ray-optics im-
ages S, Sa of the source. Equal-length
arrows confirm the correctness of the
image positions. Reflected light under-
goes two-beam interference, with its en-
ergy redistributed into cos? fringes; the
grey shading indicates crudely where
the intensity is less than average.

A slab acts as a low-grade Fabry-
Perot: multiple reflections produce a
succession of images of source S, of
which only the brightest two are shown.
At least one image to the right of the
slab is needed to account for fringes in
the light travelling towards top left.

The system has rotational symmetry
about line S3S.
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29This is not quite correct for a real
slab because distances are modified by
the slab’s refractive index.

30Equa.t;ion (11.18) is approximate here
because the two waves have slightly dif-
ferent values of 6.

31 a Michelson interferometer the
mirrors do not transmit, so there are
no fringes equivalent to those going to
the left in Fig. 11.4. Energy must, of
course, still be conserved, but the sur-
plus or deficit appears elsewhere; see
problem 11.19.

right-hand surface appears to diverge from an image S; of the source,
as far to the left of the reflector as the source is to the right of it. Light
reflected from the other surface appears to diverge?® from S;. We have
two (virtual-image) coherent sources S; and S, radiating spherical waves
that overlap in the space to the right of the slab. When amplitudes are
added at a point such as P, the result is light or dark, depending upon
the value of the path difference S;P — S1P, which in turn depends upon
angle 8 according to eqn (11.18).3° The shaded regions of the diagram in-
dicate places where there is destructive interference and there is a beam
of ‘dark’. The fringes are, of course, cos? fringes, so the intensity varies
smoothly; the abrupt changes of shading are used in the figure to make
the discussion that follows more stark.

The interference shown in Fig. 11.4 must, of course, conserve energy.3!
Therefore, where ‘dark’ travels one way away from the slab, there must
be ‘bright’ travelling the other way. Lines on the diagram indicate how
the fringes on the two sides of the slab ‘fit between each other’.

The arrangement shown in Fig. 11.4 yields fringes wherever there are
two beams of light to be added together: the fringes are non-localized.
This setup resembles a Young-slits arrangement, so far as the localization
of the fringes is concerned. We shall see that this has happened because
the light originated from a point source.

‘Non-localized’ may seem a strange term, since the fringes do have

S

Fig. 11.5 The setup shown here is an elaboration of that shown in Fig. 11.4. The light source is now no longer a point,
but is some luminous object ST. Source ST has been drawn in a nothing-special place and at a nothing-special orientation,
in order to make it clear that the discussion is general. Light from S produces a set of fringes that radiate outwards from
the images of S. Light from T produces a similar set of fringes, but displaced because they come from the images of T. Other
similar fringes originate from places in between. A point such as P receives ‘dark’ from S but ‘bright’ from T; there can be
no complete darkness there. But at large distances from the slab the fringes from S and T overlap with a displacement that
becomes negligible compared with the width of a fringe: good fringes are seen, as is suggested by the black area.



locations; they do not exist over the whole of space. This is not the
point. As we shall see shortly, there can be arrangements where inter-
ference happens, yet fringes are not seen: there is an additional condition
to be met. ‘Localized’ fringes are those subject to such an additional
condition; ‘non-localized’ fringes are those that are not.

Figure 11.5 moves us towards more practical conditions by showing
what happens when light comes from an extended source. Light orig-
inating from point S produces a set of fringes, like those of Fig. 11.4,
radiating out from the bottom end of the source-image pair. Light origi-
nating from point T does the same, but with everything shifted upwards
and to the left. Light from points in between does something intermedi-
ate. Point P, to the right of theslab and fairly close to it, receives ‘dark’
from S but ‘bright’ from T, and little sign of any organized fringes can
be seen at places similarly close to the slab.32 However, we may see that
the fringes overlap more and more as we go further away from the slab,
and eventually they become so much wider than the separation of their
sources that the overlap is total. The fringes are ‘localized at infinity’,
in that they exist at sufficiently large distances from the slab—just such
an ‘additional’ condition for seeing fringes as is claimed above.

The final step in our reasoning is made in Fig. 11.6. Rather than go to
a large distance from the slab, we ‘bring infinity closer’ by using a lens.
The ‘beams of dark’ are brought together so that their overlap is total
in the lens’s focal plane: the fringes are localized at that focal plane.33

Given that we have been made to concentrate attention on the lens’s
focal plane, we may view the lens and its focal plane as resembling a
camera lens and film arranged to be ‘focused for infinity’. This gives us
another way of understanding ‘localized at infinity’.

The reader will be able to imagine what happens to Fig. 11.6 if the
source is made longer or shorter. If it is made shorter, the extreme

\
W\
\ D
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325 is possible to get into something
of a tangle with irrelevancies. The rea-
soning given here proceeds by assuming
that all points on the source radiate in-
coherently. That is: we assume that
light from S never interferes destruc-
tively with light from T to yield ‘dark’
in the bright-expected areas. Would
things be different if there were some
significant degree of transverse coher-
ence along the length of the source?
It is for this reason that I have con-
centrated on where destructive interfer-
ence sends ‘dark’. If points'S and T
both send ‘dark’ to a given place, then
it doesn’t matter whether we should be
adding amplitudes or intensities: the
result is zero either way. What hap-
pens in the ‘bright’ areas is a separate
issue; but that issue would have been
with us in the absence of the slab ....

3375 reconcile the jargon: The fringes
are localized at the focal plane in the
lens’s image space; they are localized
at infinity in its object space.

The reader is encouraged to confirm
that the ray-optics rules of Fig. 1.3 have
been rigorously applied in the prepara-
tion of Fig 11.6.

Fig. 11.6 The fringes of Fig. 11.5 are passed through a lens. Light from both ends of the source, and from points in between,
is now focused so that all dark fringes come together at the lens’s focal plane; and similarly all bright fringes come together (at
other places) there. The best place to look for fringes is the focal plane. At the same time, the black diamond shape gives an
idea of how far we can be from the focal plane and still see fringes of some sort; that is, it shows us the depth of focus.
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beams of ‘dark’ get closer together, and the dark diamond of overlap
gets longer. In the limiting case when the source is made a mere point,
we are back to the non-localized fringes of Fig. 11.4. Conversely, as the
source is made wider, the extreme beams of ‘dark’ get further apart; the
diamond of overlap gets shorter and the focusing becomes more critical.

Given fixed values for slab thickness z, wavelength \ and refractive
index n, the condition for a bright or dark fringe consists of a condition
on 6 only. Therefore, the fringes have axial symmetry about a direction
normal to the reflecting surfaces (and passing through the centre of
the lens if we use a lens). If we use an optical arrangement like that
of Figs 5.2 or 5.8 or 11.6, the fringes are concentric circles centred on
the lens axis. The reasoning of the present section fills gaps in the
explanation of some diagrams that have appeared earlier in this book.

There is one other case of fringe localization that should be discussed:
the case where the two reflecting surfaces form a thin wedge. The inves-
tigation of this case is left to the reader: problem 11.20.

Problems

345mall angles are used here for sim-
plicity. However, the connection link-
ing étendue to field modes and to en-
tropy makes it clear that a large-angle
generalization must exist.

Problem 11.1 (a) The conservation law for étendue

Figure 11.7 shows a ray-optics image formed when light is refracted at
a curved surface separating two media; there is a similarity to Fig. 1.4.
In the first instance, AS; is the area of some luminous source which
radiates equally into all parts of solid angle Af2;. The image formed
may be real or virtual, and is drawn real for simplicity.

(1) Use ray optics to show (small angles)>* that

hy _vm AS,  v*n? A,  u?

h1 - unz’ AS] - ’U,z ’n%’ A.Ql ’U2’
and hence

(étendue)z = ng ASg A.Qz = nf A51 A.Ql = (étendue)l. (11.19)

—>P, Sk —>P,
AR
by AS,
AR hy
«— — -y — >
«~— — — — — — — v —— — — — — —>

Fig. 11.7 The geometry for problem 11.1. Area element AS; is imaged to area ASz. The solid angle collected is Af21, and
this results in an exit beam occupying solid angle Af2;.



(2) Show that the same value of étendue is obtained by using

n2 5 (22 of beam at solid angle into which
2 curved surface light leaves that surface /’

and that this works because there is no correlation between location
and ray direction. Show that no other area ‘along the way’ through the
optical system has such a lack of correlation, so étendue integrates to
contain a simple area—solid-angle product only at the refracting surface
or at an object or image.3%

(3) In the diagram, P; and P; are the optical powers crossing the planes
indicated. At best the system transmits all the power that’s incident,
and in practice it may lose a little.3¢ Use the conservation of étendue to
derive the ‘conservation law’ for radiance:

radiance of image P,
=—=<1 11.20
radiance of object P, ~ ' ( )
or, in words:

e an image formed by an optical system has (at best) a radiance equal
to that of the original object.

(4) Argue that the conservation of étendue applies to the passage of
light through any sequence of surfaces, and so applies (for example) to
the case where a light beam is transformed by a glass lens in air.

Problem 11.2 (b) Longitudinal modes and their occupation
Consider a one-dimensional wave. It might be a Gaussian beam occu-
pying a single transverse mode.3” Let it occupy a very large length L,
which is a ‘quantization length’, a length that we introduce simply to
produce a countable number of longitudinal modes.38

(1) Apply periodic boundary conditions, and show that the number of
longitudinal modes in frequency range dv is (L/v)dv, where v is the
speed of light (distinguished from c in case some medium is present).
This is the number of (longitudinal) modes travelling in just one of the

two possible directions.3? A

(2) Let a one-dimensional wavetrain have frequency range dv. Show
that the number of photons per second that pass any fixed point within

L, travelling in just one of the two possible directions, is*°

(photon flux) = (number p of photons per mode) x dv. (11.21)

(3) Why were ‘periodic boundary conditions’ desirable in part (1)?
(4) Let each of the photons of part (2) be represented as a wave packet
having duration 7,. Show that the total length of these wave packets
within L is p(L/v)dv v, where p is the number of photons per mode.
Show further that
total length of wave packets in wavetrain
length of wavetrain

=p X 1;0v. (11.22)

Interpret this as the average number of wave packets that overlap (if it’s
more than 1), or as the fraction of the time that is ‘occupied’ by light.
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35Equivalently, at a field stop or an
aperture stop.

363ome energy may be absorbed, or re-
flected from the interface. We may say
that the refracting surface introduces
an ‘insertion loss’.

37We might equally well think of waves
travelling along an electrical transmis-
sion line. Reasoning similar to that
here is used in obtaining the thermal
noise power travelling along such a line,
and hence the thermal noise (John-
son noise, one-dimensional black-body
radiation) radiated into the line by a re-
sistor. See, e.g., Robinson (1974), §4.1.

3800mpare with the large volume V
that we introduce when deriving the
density of states in statistical mechan-
ics.

39Longi';udinzi.l and transverse modes
are being distinguished in the same way
as they were in Chapter 8. In all of this
problem we consider a single polariza-
tion only.

40This result is easy to remember if we
take an unconventional viewpoint and
think that 8 modes pass per second,
each occupied by p photons.
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41This numerical value is taken from
Table 11.1. It is the basis of a number
of arguments about intensity fluctua-
tions in Chapter 10, especially in prob-
lem 10.21.

Fig. 11.8 Light arrives at area AS
from within a cylinder making angle
with the z-axis and of slant height v 8t.
All photons within the cylinder and tra-
velling in direction 6 meet or cross area
AS in time &¢.

42 Any convenient set of eigenfunctions
can be used to describe the transverse
structure, not necessarily the Gauss—
Hermite functions of eqn (8.1).

43The present problem has concerned
itself with the arrival of photons onto
some surface element AS. The radi-
ance of a black-body surface is obtained
by appeal to the ‘principle of detailed
balance’, requiring that what is radia-
ted balances what is received.

(5) Apply eqn (11.22) to a natural-broadened wavetrain, as modelled in
§9.12 and problem 10.5: a sequence of identical wave packets each of
duration 7;. Show that eqn (11.22) simplifies for this case to

fraction of wavetrain ‘occupied’ = p. (11.23)
When applied to light of realistic intensity, this shows that photon wave
packets are ‘sparse’, with only about 2% of the wavetrain occupied.*!

Problem 11.3 (b) Etendue and occupied transverse modes

Consider radiation occupying frequency interval dv, travelling in direc-
tions within solid angle 8f2 and impinging on area AS at angle 8 to
the normal. We take 8f2 = sinf 86 8¢ to encompass a small range of
directions, so the light forms a near-collimated beam.

(1) We know from statistical mechanics that the number of modes per
unit volume within frequency range Sv is (472 8v)/c®, where the usual
factor 2 for polarizations is omitted as it will be dealt with separately.
Argue that the expression must be changed to (4wv?8v)/v3 if the radi-
ation travels in a medium in which the speed of light is v = ¢/n, where
n is the refractive index.

(2) The expressions given in part (1) apply to radiation travelling in all
directions. Argue that if radiation travels within solid-angle range 812 it
must occupy a fraction 8§2/4n of these modes, so the number of modes
(per volume) it occupies within dv and 82 is (v2 dv/v3)d12.

(3) Next adapt a standard discussion in gas kinetic theory to work out
the number of photons that impinge on area AS within time 8 from
within the solid angle 8f2. Figure 11.8 may help. Those photons that
impinge within time 8t are those that occupy a cylinder whose base area
is AS and slant height is v 8¢, making an angle 6 to the normal to the
surface. The volume of this cylinder is AS vdtcosd. Within this are
p photons per mode in (v28v/v3)8f2 modes per unit volume. Put this
together, and show that the number of photons arriving per unit time is

n2 82 AS cosf
A2 ’

vac

photon flux =p x v X ( (11.24)

(4) The light beam occupies a small range of directions, so it can be
described as composed of longitudinal and transverse modes, after the
fashion?? of the cavity modes in Chapter 8. Using eqn (11.21), iden-
tify dv in eqn (11.24) as representing the number of longitudinal modes
contributing to the photon flux.

(5) Use the results of parts (3) and (4) to show that

n?82AScos  étendue
Az, A

(number of transverse modes) = (11.25)

in agreement with eqn (11.9).
(6) Use eqn (11.24) to confirm eqns (11.11) and (11.12).43



Problem 11.4 (b) Etendue of a Gaussian beam

(1) Define the area AS of a Gaussian beam at its waist as a circle of
radius wo where wy is the waist spot size defined in eqn (7.12). Take Af2
as the (similarly defined) solid angle into which the beam diffracts in its
far field. Show that with these definitions the étendue of a Gaussian
beam comes out to be exactly A2,..

(2) What is wrong with the following argument? Take the same laser
beam as in part (1) but take AS as the area of the beam at distance b
(the confocal parameter) from the waist. Then AS is double what we
had before, A2 is unchanged, so the étendue works out at 2A2,.. And
an area AS farther from the beam waist would give an even larger value.
(3) [Harder] Generalize the discussion to the case of a Gauss—Hermite
beam with transverse-mode eigenvalues [, m.

Problem 11.5 (a) Etendue and numerical aperture
(1) Confirm eqn (11.4). :
(2) Combine egns (11.4) and (11.9) to derive both parts of eqn (11.14).

Problem 11.6 (a) Reading a CD
The information track of a CD is read** by focusing a laser onto it
through the body of the plastic disc. Show directly that refraction at the
air—plastic interface has no effect on the numerical aperture, the étendue
of the light beam, or the diffraction pattern formed at the focus (do not
make a small-angle approximation).43

Does the refractive index affect the depth of focus?

Problem 11.7 (a) Coherence area and transverse modes

A light beam consists of a mixture of the (0,0) and (1,0) transverse
modes of eqn (8.1), with coefficients varying randomly with time. Show
that the relative phases at locations (z,y) = (—w,0) and (z,y) = (w,0)
are made unpredictable by the mixture.*5

Problem 11.8 .(a) The number of photons per mode

In black-body radiation, the number of photons per mode is given by the
Planck distribution (e"*/¥8T —1)~1. ‘Mode’ means that both longitud-
inal and transverse characteristics are specified, as is the polarization.
(1) Show that the number of photons per mode, for black-body radia-
tion, is greatest when the frequency is low and the temperature is high.
(2) Calculate the number of photons per mode in black-body radiation
for the cases given in Table 11.1 and check the values given there.

(3) Find the power that can be extracted from a black-body lamp, at
wavelength 633 nm, into étendue A2, and in a frequency range of 1 GHz.
Consider temperatures of (a) 2000K and (b) 6000 K. Express the results
in units of photons per second and in watts.

[My answers: (a) 2.3 x 10* photons s~!, equivalent to 7.3 x 1071°W;
(b) 4.6 x 107 photons s™1; 1.5 x 1071 W. If polarized light is required
these figures must be divided by 2.]
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447 fuller description of the optical sys-
tem is given in §16.4.

45Thus, there is no advantage to be
gained (and no disadvantage to be
fought) by choosing any particular
value for the refractive index of the
plastic.

46This model shows very directly that
a beam containing more than one trans-
verse mode extends over more than one
coherence area. Conversely, we see how
it comes about that transverse coher-
ence is associated with having only one
transverse mode, as claimed in §11.5.
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47This number of transverse modes is
obtained, for a particular set of fibre
characteristics, in problem 14.1.

48 Answer: Surprisingly, case (2) offers
hardly any increase of visual bright-
ness, though it’s more comfortable to
observe.

49The spectrometer is in air so we drop
the n? factor.

Comment: These figures show why laser light is so spectacularly more
intense than black-body light. Even a modest laser, say a He—Ne radi-
ating 1 mW into several longitudinal modes spanning 1 GHz, is brighter
by a factor between 10® and 10'2.

Comment: The conclusions here give a more quantitative view of the
discussion of laser coherence in §9.15.1.

(4) Discuss whether a laser source is essential, or whether something
cheaper will do, for:
(a) the 780 nm radiation source used in reading a CD in a domestic
CD player
(b) the 1.3 pm radiation source used for sending information along
a single-transverse-mode optical fibre carrying 2 Gbits™!
(c) the 850nm radiation used for sending information along a ‘mul-
timode’ glass fibre which supports 1622 transverse modes*”
(d) the radiation used in a ‘laser printer’ giving a resolution on the
paper of 600 dots per inch
(e) for exposing a hologram whose area is 100 mm by 100 mm.

Problem 11.9 (a) Etendue required for the Young slits

Investigate a Young-slits experiment in which the fringes are observed
by eye. We want the fringes to be bright enough to see comfortably. For
this it isn’t the total optical power that’s of interest, but the power per
unit area on the observer’s retina. Consider the cases

(1) where the source is so small that the illumination is transversely
coherent along the length of the Young slits as well as across their width

(2) where the source is elongated into a slit after the fashion of Fig. 3.10,
giving fringes in the usual pattern of stripes.*8

Problem 11.10 (a) Energy throughput for a grating monochromator
Let a per-frequency radiance B(v) be defined as in §11.7, so that a light
source (not a laser) is described (small angles) by

(power radiated in frequency range dv

_ 2
from area AS into solid angle Af2 ) = B(v)w (n"AS AD).

Imagine that we send its light into a grating monochromator. The power
gathered by the instrument is*®

(radia,nce of image of source) (area of ent- ) (solid angle)
. X . X
formed on entrance slit rance slit collected

The radiance of the image at the entrance slit, formed by a condenser
lens, is at best (eqn 11.8) equal to the radiance B(v)dv of the light
source, so the power we can gather (ignoring insertion loss) is

P = B(v)dv x (area of entrance slit) x (solid angle collected).

Comment: In practical laboratories, students are instructed to ‘fill the
entrance slit with light, and fill the grating with light’. The reason for



this injunction is now clear: you lose out if the area sending light into
the monochromator is less than the full area of the entrance slit; and
you lose out if light isn’t sent into the full available solid angle.5°

We’ll now apply these ideas to a monochromator whose grating is

square of side Nd, used with angle of incidence a; we are using the same
configuration as in problem 4.6. The collimator lens’s focal length is f.
(1) Show that light leaving the instrument’s entrance slit is collected
within the solid angle A2 = (Nd/f)? cosc.
(2) Let the entrance slit have width (Ay)si;. Imagine that (Ay)g; is in-
creased from zero; it begins to degrade the instrument’s resolution when
(Ay)siit reaches about fA/(Ndcosa). Compare with problem 4.6(6) and
example 4.1 part (7) and eqn (4.10). To make the entrance slit much
narrower than fA/(Ndcosa) just wastes energy that could be admit-
ted to the monochromator and used. So we’ll probably choose to make
(Ay)siit about equal to fA/(Ndcosa). We might even make the slit
considerably wider, if we don’t mind degrading resolution in struggling
for all the energy we can get. Either way, we’ll have

(Ay)siie = (dy/dA) 3A, (11.26)

where dy/dX = pf/(dcosa) is the grating dispersion (referred to the
entrance plane), p is the order of the spectrum, and 8] is the resolution
we agree to accept.

(3) Let the length of the entrance slit be h. Now assemble together the
factors introduced above to show that

Problems for chapter 11 265

50 A similar point is made in §4.9.2 and
problem 4.13, but the significance of the
product (area) X (solid angle) should
now be clearer.

P = B(v) per-frequency-interval radiance of source
x (w)Yv resolution demanded at frequency v
x (Nd/f)*>  1/(f-number)?; shape of apparatus
x hf (linear dimension)?; larger apparatus permits larger slit area
X sina (=~ pA\/d); maximize this for the best energy transmission.

The first two factors can’t be controlled to any great extent. It’s a good
idea to have a small f-number, but we soon reach a limit set by aber-
rations in lenses or mirrors. After this, optimizing lies in doing the best
we can with the last two factors. If all else fails we can increase the
size of the entire spectrometer, but that has to be a last resort. The
one thing we can optimize is sin «, making sure it isn’t too far below 1.
Since sina — sinf = p\/d and we are likely to aim to have 6 ~ 0, we
have sina ~ A(p/d). It follows that we must choose (p/d) with some
care. There are reasons (unconnected with étendue, the possibility of
overlapping orders) why it is best to choose p small, ideally p = 1. So we
are pressed to choose the most finely ruled grating that will work.5!

(4) Why does the analysis given here need further elaboration before it
can be applied to a spectrograph, in which the spectrum is photographed?

Comment: We comparé eqn (11.27) with corresponding expressions for
other instruments in problem 11.14.

(11.27)

S1¢That will work’ is an allusion to the
grating equation dsin a = pA. Nothing
will work if we choose values that make
pA/d = sina > 1, either by making d
too small or p too large. Additionally,
a grating is usually required to record a
range of wavelengths, and our choice of
a must result in a range of s that we
can live with. Opportunities for dram-
atic improvement in the power P col-
lected are not usually available unless
we’ve been doing something silly.
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52 pis problem, and the following
seven, may be compared with a rather
similar treatment in Thorne (1988),
especially §7.9.

53 An aperture is shown at the input,
but it is optically a little wider than
the exit hole (meaning it is wider than
the real image of the exit hole formed
‘backwards’ by the mirrors and lenses),
and it is there only to minimize the ad-
mission of stray light.

54Hint: Figures 10.2 and 10.3 give a
number of examples upon which a dis-
cussion may be based if desired.

55 An instrumental line profile has been
encountered previously in problems 4.8
and 5.8. Instrumental width has been
encountered, for the case of a grating
spectrometer in eqn (4.8), and for the
case of a Fabry—Perot in eqn (5.10).

56 Hint: This result is approximate,
and assumes that woT > 1.

Problem 11.11 (b) Resolution of Fourier-transform spectrometer?
An outline diagram of a Fourier-transform spectrometer is given in
Fig. 10.1, and the important dimensions of it are identified in Fig. 11.9.
Light reaching the detector is that which has passed through a small
circular hole of diameter w at the focus of a lens of focal length f. The
movable mirror on the right introduces a path difference 2z between the
interferometer arms.

(1) Why is the limiting aperture located in front of the detector, rather
than at the input?33

(2) Suppose that z is scanned from 0 t0 Tmax. Show that the resolu-
tion, in terms of wavenumber # = 1/Avacyum, can be expressed as an
instrumental width Az, where

AD ~ 1/(4Zmax), (11.28)

within a factor 2 or s0.5* Check this against the general statement about
resolution in eqn (4.6).

(3) The resolution of a spectroscopic instrument is best described by
defining an instrumental line profile. This is the apparent frequency
spectrum of a monochromatic wave when examined with the given instru-
ment.> Show that a pure sinewave of angular frequency wp gives an
apparent frequency distribution (instrumental line profile), after Fourier
computation, of®

sin(w — wp)T
(w—wo)T ’

L(w — wp) where T =2zmac/c.  (11.29)

oo -

to detector

Fig. 11.9 A Michelson interferometer set up for use as a Fourier-transform spectrometer. The right-hand mirror is positioned
to introduce an optical path difference of 2z between the two interferometer arms, distance z being adjustable over as large a
range as may be necessary. Light passing through the interferometer has its range of directions limited by a small circular hole

of diameter w in front of the detector.



(4) Draw sketch graphs of the functions W(7) and P(w) for this case.

and add them to the collection in §10.7.

(5) A spectral line with power spectrum P(w) is analysed with the
Fourier transform spectrometer. Consider each individual angular fre-
quency component w’ received from the source, and work out what it
contributes to the output. Show that the computed profile is

Pmeasured(w) 0,8 / P(wl) L(w - w’) dw/, (11.30)

which is the convolution of P(w) with the instrumental line profile.
(6) Obtain the result of part (5) by a different route. Since we stop the
scan at Tmax,

Wmeasured(T) = Wsource(T) X H(T)a (1131)

where H(7) is a ‘top hat’ function
H(r) = 1 for —2a‘:max/c < T < 2Tmax/c (11.32)
0 otherwise.

Now use the convolution theorem (backwards).

(7) It is useful to define an arbitrary criterion for the limit of resolution.
Since L(w —wp) has the same form as the amplitude (not intensity, note)
in a single-slit diffraction pattern, it makes sense to adapt the Rayleigh
criterion. Show that with such a choice,?”

A7 = 1/ (42 max)- (11.33)

Problem 11.12 (c) Something is wrong!

The L(w — wp) of eqn (11.29) is the result of measuring the power
spectrum P(w) for a special case. It is negative for some values of
(w — wp). But power can’t be negative, so something must have gone
wrong. What?

Problem 11.13 (b) Improving the instrumental line profile
The L(w — wp) calculated in problem 11.11 has obvious inconvenient
properties:

e it is an oscillating function of (w — wp)T, so it can yield negative
values of Preasured (w), which must be physical nonsense

e its positive excursions can create small peaks in Ppeasured (w) that
might be misinterpreted as weak spectral lines

e by falling slowly away from line centre, it could hide a quite distant,
weaker, line.

(1) Show that the most negative value of L(w — wp) is 22% of its most
positive value, so the oscillations of L(w — wp) are quite serious.

(2) Suggest a way in which these artefacts could be reduced or elimin-
ated.58
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57 This might look ‘too good’ in relation
to eqn (4.6). Remember that W(7) is
an even function of 7, so by measuring
from 0 to Tmax we are in fact obtain-
ing knowledge of W (7) from —Zmax to
ZTmax. This property has been relevant
from the beginning of this question, in
particular in setting the limits on H(T)
in eqn (11.32).

58 Hint: Think of similar problems.
Problem 2.17. Apodizing.
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59 Comment: There are implications
here for the effort we need to put into
the quality of our equipment: the reflec-
tivity of the beam splitter is not critical;
spend money and effort elsewhere.

50For the precise numerical factor on
the right see problem 11.16.

61 Comment: This should agree with
previous experience in problem 4.13,
where all attempts at optimizing a con-
denser lens in front of a spectrometer
cancelled out in a similar way.

6214 is assumed that 4Zmax < Ndsinc.
If this condition is not met, the in-
struments are not comparable because
the interferometer achieves a resolution
outside the capability of the grating.

Problem 11.14 (b) Light gathering: Fourier-transform and grating
spectrometers compared

(1) Show that if the beam splitter in a Michelson interferometer divides
the amplitude into the two arms unequally, the intensity falling on the
detector is reduced, but the fringe visibility is unaffected.>?

(2) Show that, if the resolution is not to be degraded from the value
found in problem 11.11, the exit pinhole of the Fourier-transform in-
strument must have diameter w, where®?

w 2 \/?
f < (xma.x>

More realistically, the resolution may be limited both by the finite
travel Zp,,x of the movable mirror, and by the finite diameter w of the
exit pinhole. We should construct an ‘error budget’ so that these two
limitations result in a combined performance lying within a design re-
quirement. A reasonable start is to allow the resolution to be degraded
about equally by the two contributions. Then

w 2) \/2
?—(xmu> ’

and the overall resolution limit is changed to AV = 1/(2z,ax), twice the
value obtained previously.

(3) Let the interferometer mirrors be square with side D. The étendue
can be worked out by using the area mw?/4 of the exit pinhole, taken
with the solid angle D?/f? within which light arrives at the pinhole.
Show that the étendue is 7D?)\/(2Zmax) = 7D?AAD. Notice that w
and f have cancelled out, so there is nothing we can do to optimize the
power by choosing favourable dimensions for the pinhole or the focal
lengths of lenses.®! The result obtained here should ‘feel right’, given
the invariance of étendue.

(4) Let the source have radiance B. Show that the power reaching the
detector in a bright fringe is (small angles)

(11.34)

(11.35)

‘peak power at detector = TBD?\AD. (11.36)

(5) Now make a comparison with corresponding quantities for a grating
monochromator. Assume that the grating is used with incidence angle
a, the same conditions as were assumed in problem 11.10. To make the
instruments roughly comparable, we’ll take the grating to be square with
side Nd = D, and the entrance slit width will be set to give the same
resolution Av as is achieved with the Fourier-transform instrument.52
Use eqn (11.26) to show that the spectrometer’s entrance slit has width
Ay = (pfs/dcosa) AN = fsAtan a Ap, where f is the focal length of the
monochromator’s collimating lens. Show that the étendue is

étendue of grating monochromator = (Nd)?(h)/f,)sina Av. (11.37)
Show that the power reaching the monochromator’s detector is

power reaching detector = B(v)dv (Nd)?(hX/f;)sina Ap.  (11.38)



(6) Assemble these results to show that the ratio

R =

detector power in interferometer _ Biotal fs 1
hsina /)’

detector power in monochromator  B(v)dv
(11.39)

(7) Show that the quantity in large brackets, Ry = wfs/(hsina), is
the ratio of the two instruments’ étendues. For a monochromator, the
entrance slit length h cannot be made very large because of aberrations
in the focusing optics (lenses or mirrors), so that f;/h ~ 40. We can,
therefore, estimate the geometrical factor, the ratio of étendues R;, as
about 200 in favour of the interferometer.
(8) Consider now the other factor in eqn (11.39). The numerator Biotal
is the radiance of the source totalled over the whole range of frequencies
that is being accepted by the interferometer. The denominator is the
radiance for frequencies that lie within the range dv transmitted by
the grating instrument. If the radiation were ‘white’, we should have
v = cAv and

Biotal N frequency range accepted by interferometer

B(v)w resolvable frequency difference

. (11.40)

which can easily be of order 10%. Even if the radiation is far from white,
say a line spectrum containing 100 lines, the ratio Biota/B(v)dv will
still be 100 or so. Altogether then,

Btotal
B(v)dv’

which is likely to be in the range 10 to 107.

R ~ 200 x

(11.41)

Comment: This problem shows that the interferometer has a large super-
iority in energy gathering, composed of two factors

e a factor of order 200, of purely geometric origin (larger étendue),
which permits the interferometer to accept more light energy for a
given resolution

e a factor because the interferometer ‘looks at all of the spectrum at
once’.

Of course, it is not yet obvious what the accuracy will be after our
computer has used the data to calculate a Fourier transform: we wonder
how errors propagate through the calculation .... Nevertheless, we do
win a great deal. The factor from étendue gives an unqualified advantage
to the interferometer. The second factor requires more careful analysis,
and may or may not favour the interferometer depending on conditions.
There is a nice discussion in Thorne (1988), §7.9.

Problem 11.15 (b) The Fourier-transform spectrometer as a whole-
fringe instrument

Problem 11.14 raises an obvious general question: what étendue is theo-
retically possible in a spectrographic instrument with a given resolution?
Here we investigate.
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63Ec]ua,tion (11.42a) seems to fall short
of this by a factor 2. This is merely
because we have allowed the finite pin-
hole diameter and the finite mirror
travel both to degrade the resolution.
Show this. The whole-fringe property
of eqn (11.43) applies if all of the limita-
tion on resolution comes from the pin-
hole. The same factor 2 accounts for
a difference between eqns (11.42b) and
(11.17).

64Not a large hole, which would wreck
the resolution. A set of transparent an-
nuli with black between them, rather
like a Fresnel zone plate, arranged to
match the sizes of the rings in the fringe
pattern.

(1) Show that the Fourier-transform spectrometer, with the design de-
cisions of problem 11.14, has the properties:

(solid angle within which light is accepted)

X (chromatic resolving power) = 7 (11.42a)
(étendue) x (chromatic resolving power) = w x (area of a mirror).
(11.42b)

Here the solid angle referred to is mw?/(4f2) within the notation of prob-
lem 11.14; and the chromatic resolving power is A/A\ as in eqn (4.5).

(2) Explain in words why étendue has to be traded against resolution.
(3) Investigate whether a Fabry—Perot has a similar property.

Comment: Equation (11.42a) is similar to the property that defines a
whole-fringe instrument:3

(solid angle) x (chromatic resolving power) = 2. (11.43)

For discussion of this concept, see Jacquinot (1960). Jacquinot identifies
a whole-fringe instrument as representing a useful standard of compar-
ison so far as the gathering of light energy is concerned. We learn that
a Fourier-transform spectrometer conforms to this standard.

Conversely, we learn that a grating spectrometer is not a whole-fringe
instrument, and that it has by comparison a remarkably unfavourable
étendue.

(4) Look at §8.10. The confocal Fabry—Perot accepts an even larger
solid-angle range than does a normal Fabry-Perot. So does a whole-
fringe instrument represent an unsurpassable optimum?

(5) Come to think of it, we could invent an improvement to a Fourier-
transform spectrometer or a Fabry—Perot. Where the ring-fringes lie in
front of the detector we could place an aperture that transmits several
rings,%4 rather than just the central spot. Since all bright rings have
the same area, we would gain a factor equal to the number of fringes
transmitted. Why is this recourse rarely attempted?

Problem 11.16 (c) Fourier-transform spectrometer: diameter of exit
pinhole

A Fourier-transform spectrometer delivers light to its detector through
a pinhole of diameter w. This diameter is now non-negligible.

(1) Show that a monochromatic input gives an intensity at the detector
of I(r), where 7 = 2z /c and

in{kzw? 2
W(r) = I(r) = 31(0) o cos{2kz{1 — w¥(16f*)}} x %‘/—(/gT)}
(11.44)

Interpret the two factors here.

(2) Find the instrumental line profile that results from the finite size of
the source aperture. Show that it is a top-hat function with full width

1 w?

AV= X@

(11.45)



(3) Show that the A just calculated is the least spacing between re-
solvable spectral lines, if the resolution is limited entirely by the finite
size of w.

(4) Problem 11.11(7) has shown that when the resolution is limited
entirely by the finite travel of the moving mirror, the resolution is
AD = 1/(4Tmax). Show that, if we agree to make both limits on the
resolution equally damaging, then we must choose w/f to have the value
V/2A/Tmax that was claimed in eqn (11.35) of problem 11.14(2).

Problem 11.17 (b) The rate of scanning and digital sampling

A Fourier-transform spectrometer works by scanning one mirror between
z = 0 and £ = Tyax- Discuss the allowable speed of the scanning and
its relation to the response time of the ‘slow’ detector (‘slow’ defined as
in §9.10).

During a scan, the intensity I(x) reaching the detector is to be sam-
pled at discrete values of z, digitized and fed to a computer for the
Fourier analysis. What® is the greatest allowed separation Az between
samples?

Problem 11.18 (a) Mechanical considerations

Consider a Fourier-transform spectrometer used at a wavelength of order
500nm. Let the mirror diameter D be 50 mm.

(1) Estimate the tolerance on angular orientation of the movable mirror.
(2) Estimate the precision with which z must be known during its scan.
(3) Repeat these estimations for a wavelength of order 10 pm.

(4) Use your values to comment on the desirability of a Fourier-trans-
form spectrometer as an instrument for the visible and for the infrared.6¢

Problem 11.19 (a) Energy conservation in slab interference

(1) Consider the equivalent of Fig. 11.4 for a Michelson interferometer.
Light travelling to the right exhibits bright and dark fringes. In the case
of the slab, energy conservation was assured by a second set of fringes,
with light and dark interchanged, travelling to the left. But in the
Michelson interferometer the mirrors are opaque and the ‘transmitted’
fringes are absent. This is drawn attention to in sidenote 31 on p. 258.
Yet energy must still be conserved: what does not go into a dark fringe
must go somewhere else. Where?

(2) A slab is illuminated as in Fig. 11.4, but its left-hand surface is

perfectly reflecting. Discuss the conservation of energy in the resulting
interference pattern.

Problem 11.20 (b) Localization of ‘wedge’ fringes

When light is reflected from two surfaces that are close together and
whose spacing varies, we have ‘fringes of equal thickness’. They are
localized at the thin layer. Construct an explanation of this localization.
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65Hint: The idea needed is contained
the Nyquist sampling theorem, which is
well known in this kind of digital elec-
tronics. For example, it sets a lower
limit on the sampling rate that must
be used during the recording of sound
that will end up impressed on a CD.

66This merely scratches the surface.
Problem 11.18 shows that a Fourier-
transform instrument is easy to en-
gineer for infrared use. But the
really important thing about the infra-
red is how much we need the super-
ior energy-gathering of the Fourier-
transform technique. Reasons:

o Radiative lifetimes are long (roughly
o« w~3) so spontaneous emission is
infrequent, and spectroscopy must
be done in absorption.

e Continuum sources for absorption
spectroscopy are weak (o< w? accord-
ing to Rayleigh—Jeans).

e Detectors are notoriously insensitive
once the photon energy Fuw gets too
small to activate a quantum detec-
tion process.



