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Statistical optics is the study of the properties of random light. Randomness in light
arises because of unpredictable fluctuations of the light source or of the medium
through which light propagates. Natural light, e.g., light radiated by a hot object, is
random because it is a superposition of emissions from a very large number of atoms
radiating independently and at different frequencies and phases. Randomness in light
may also be a result of scattering from rough surfaces, diffused glass, or turbulent
fluids, which impart random variations to the optical wavefront. The study of the
random fluctuations of light is also known as the theory of optical coherence.

In the preceding chapters it was assumed that light is deterministic or “co-
herent.” An example of coherent light is the monochromatic wave u(r,t) =
Re{lU(r) exp(j2mvt)}, for which the complex amplitude U(r) is a deterministic complex
function, e.g., U(r) = A exp(—jkr)/r in the case of a spherical wave [Fig. 10.0-1(a)].
The dependence of the wavefunction on time and position is perfectly periodic and
predictable. On the other hand, for random light, the dependence of the wavefunction
on time and position [Fig. 10.0-1(4)] is not totally predictable and cannot generally be
described without resorting to statistical methods.

How can we extract from the fluctuations of a random optical wave some meaning-
ful measures that characterize it and distinguish it from other random waves? Examine,
for instance, the three random optical waves whose wavefunctions at some position
vary with time as in Fig. 10.0-2. It is apparent that wave (b} is more “intense’ than
wave (a) and that the envelope of wave (¢) fluctuates “faster” than the envelopes of
the other two waves. To translate these casual qualitative observations into quantitative
measures, we use the concept of statistical averaging to define a number of nonrandom
measures. Because the random function u(r, ¢) satisfies certain laws (the wave equation
and boundary conditions) its statistical averages must also satisfy certain laws. The
theory of optical coherence deals with the definitions of these statistical averages, with
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Figure 10.0-1 Time dependence and wavefronts of (a) a monochromatic spherical wave, which
is an example of coherent light; (5) random light.
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Figure 10.0-2 Time dependence of the wavefunctions of three random waves.

the laws that govern them, and with measures by which light is classified as coherent,
incoherent, or, in general, partially coherent.

Familiarity with the theory of random fields (random functions of many
variables—space and time) is necessary for a full understanding of the theory of optical
coherence. However, the ideas presented in this chapter are limited in scope, so that
knowledge of the concept of statistical averaging is sufficient.

In Sec. 10.1 we define two statistical averages used to describe random light: the
optical intensity and the mutual coherence function. Temporal and spatial coherence
are delineated, and the connection between temporal coherence and monochromaticity
is established. The examples of partially coherent light provided in Sec. 10.1 demon-
strate that spatially coherent light need not be temporally coherent, and that
monochromatic light need not be spatially coherent. One of the basic manifestations of
the coherence of light is its ability to produce visible interference fringes. Section 10.2
is devoted to the laws of interference of random light. The transmission of partially
coherent light in free space and through different optical systems, including image-
formation systems, is the subject of Sec. 10.3. A brief introduction to the theory of
polarization of random light (partial polarization) is provided in Sec. 10.4.

10.1 STATISTICAL PROPERTIES OF RANDOM LIGHT

An arbitrary optical wave is described by a wavefunction wu(r, t) = Re{U(r, t)}, where
U(r,t) is the complex wavefunction. For example, U(r,!) may take the form
U(r) exp(j27vt) for monochromatic light, or it may be a sum of many similar functions
of different v for polychromatic light (see Sec. 2.6A for a discussion of the complex
wavefunction). For random light, both functions, wu(r, ¢) and U(r, t), are random and
are characterized by a number of statistical averages introduced in this section.

A. Optical Intensity

The intensity I(r,t) of coherent (deterministic) light is the absolute square of the
complex wavefunction Ulr, t),

I(r, 1y = U(r, )" (10.1-1)

(see Sec. 2.2A, and 2.6A). For monochromatic deterministic light the intensity is
independent of time, but for pulsed light it is time varying.
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For random light, U(r, ¢) is a random function of time and position. The intensity
|U(r, £)|* is therefore also random. The average intensity is then defined as

I(r, 1) = (U(r, 1)), (10.1-2)
Average Intensity

where the symbol ( - ) now denotes an ensemble average over many realizations of the
random function. This means that the wave is produced repeatedly under the same
e Aditinmg writh Annkh tetol vialdi;s o0 Aiffacamt srngafizentinea nmd tha avavrnmna featasmoiter
CUILILILIVLLS, WILIL Tdlll Lllal YICHUILE a Uil wavOluliCLivll, aliu L dVCldgC llllCllDlLy
at each time and position is determined. When there is no ambiguity we shall simply
call I(r,r) the intensity of light (with the word “average” implied). The gquantity
P 2 P - al o B ___ — S__ a4 __ a4 __ .. __ Y __.a 84 U [P, S, Ly M al.
[U(r, £)I° is called the random or instantancous intensity. For deterministic light, the
averaging operation is unnecessary since all trials produce the same wavefunction, so
that (10.1-2) is equivatent to (10.1-1).
T nxrascmos; ssndmenoade: wmenzy b dlwmes feecdgwm v T et e cnmnr b o L gl L al o o o
1IIC avlldgC 1IICLDILY 1dy DC LIIC HNUCPCIIUCIIL O 1ldy DO d 1UlCuoll Ol LIe, dd>
illustrated in Figs. 10.1-1(a) and (&), respectively. The former case applies when the
optical wave is statistically stationary; that 2is, its statistical averages are invariant to
time. The instantaneous intensity |U(r, )| fluctuates randomly with time, but its

average is constant. We will denote it, in this case, by I(r). Stationarity does not
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Figure 10.1-1 (a) A statistically stationary wave has an average intensity that does not vary with
time. (b) A statistically nonstationary wave has a time-varying intensity. These plots represent,
e.g., the intensity of light from an incandescent lamp driven by a constant electric current in (@)
and a pulse of electric current in (b).
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necessarily mean constancy. It means constancy of the average properties. An example
of stationary random light is that from an ordinary incandescent lamp heated by a
constant electric current. The average intensity /(r) is a function of distance from the
lamp, but it does not vary with time. However, the random intensity |U(r, £)|* fluctuates
with both position and time, as illustrated in Fig. 10.1-1(a).

When the light is stationary, the statistical averaging operation in (10.1-2) can
usually be determined by time averaging over a long time duration (instead of
averaging over many realizations of the wave), whereupon

1 .7
I(r) = lim — { " [U(r, 1)|? dt. 10.1-
(1) = lim = [* U(r, 1) (10.1-3)

B. Temporal Coherence and Spectrum

Consider the fluctuations of stationary light at a fixed position r as a function of time.

The stationary random function U(r, ) has a constant intensity I(r) = {|U(r, HI? Y. For
hravity wa dran thae » denendanece (cinece » ic ivad) cn that Tl f\ THtYand (e — T
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The random fluctuations of U(¢) are characterized by a time scale representing the
“memory” of the random function. Fluctuations at points separated by a time interval
longer than the memory time are independent, so that the process “forgets” itself. The
function appears to be smooth within its memory time, but “rough” and “‘erratic’” when
examined over longer time scales (see Fig. 10.0-2). A quantitative measure of this
temporal behavior is established by defining a statistical average known as the autocor-
relation function. This function describes the extent to which the wavefunction fluctu-
ates in unison at two instants of time separated by a given time delay, so that it
establishes the time scale of the process that underlies the generation of the wavefunc-
tion.

Temporal Coherence Function
The autocorrelation function of a stationary complex random function U(#) is the
average of the product of U *(¢) and U(t + 7} as a function of the time delay 7

G(r) ={U*(U(t + 7)) (10.1-4)
Temporal Coherence
Function
or
__1_ fT Ik rr

T 2T/ 71

(see Sec. A.1 in Appendix A).
To understand the significance of the definition in (10.1-4), consider the case in
Wthh the average value of the complex wavefunctlon (U(t)) = 0 ThlS is apphcable

2w, as 1llustrated in Flg 10 1 2. The phase of the product U*(t)U(t + 1') is the angle
between phasors U(t) and U(r + 7). If U(t) and U(¢ + 7) are uncorrelated, the angle
between their phasors varies randomly between 0 and 2. The phasor U *(¢)U(t + 1)
then has a totally uncertain angle, so that it is equally likely to take any direction,
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Figure 10.1-2 Variation of the phasor U(r) with time when its argument is uniformly dis-
tributed between 0 and 2w. The average values of its real and imaginary parts are zero, so that
(U(1)y = 0.

making its average, the autocorrelation function G(7), vanish. On the other hand if,
for a given 7, U(¢) and U(t + 7) are correlated, their phasors will maintain some
relationship. Their fiuctuations are then linked together so that the product phasor
U*(t)U(t + 7) has a preferred direction and its average G(r) will not vanish.

In the language of optical coherence theory, the autocorrelation function G(r) is
known as the temporal coherence function. It is easy to show that G(7) is a function
with Hermitian symmetry, G(—7) = G*(7), and that the intensity [, defined by
(10.1-2), is equal to G(r) when 7 = 0,

= G(0). (10.1-5)

Degree of Temporal Coherence

The temporal coherence function G(r) carries information about both the intensity
I = G(0) and the degree of correlation (coherence) of stationary light. A measure of
coherence that is insensitive to the intensity is provided by the normalized autocorrela-
tion function,

_ G(r) _ WH(HYU(t + 7))
RORERCEGOR (10.1-6)
Complex Degree
of Temporal
Coherence

g(7)

which is called the complex degree of temporal coherence. Its absolute value cannot
exceed unity,

0<lg(r)l< 1. (10.1-7)

The value of lg(r)| is a measure of the degree of correlation between U(s) and

U(t + 7). When the light is deterministic and monochromatic, ie., U(t) =
Aexp(j2myyt), where A is a constant, (10.1-6) gives

g(7) = exp(j2mvyr), (10.1-8)
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so that |g(7)] = 1 for all 7. The variables U(t) and U(t + 7) are then completely
correlated for all time delays 7. Usually, |g(7)| drops from its largest value |g(0)| = 1 as
7 increases and the fluctuations become uncorrelated for sufficiently large time delay 7.

Coherence Time

If |g{7)l decreases monotonically with time delay, the value 7, at which it drops to a
prescribed value (% or 1/e, for example) serves as a measure of the memory time of the
fluctuations known as the coherence time (see Fig. 10.1-3). For 7 < 7, the fluctuations

ara “ctranaly’’ corralatad wharaae far - > + thay ara “waally’”’ parralatad In ganaral
ailv  SuUVIIEly Gwulluialvu wikvivadds 1ul 7 -~ 9 Uy alv woaniy vuliviatcua. 11l goelicial,

7. is the width of the function |g(7)l. Although the definition of the width of a function
is rather arbitrary (see Sec. A.2 of Appendix A), the power-equivalent width

f 1 rd Ll N N
Te :} 1g{7)l ar (10.1-9)
Coherence Time

is commonly used as the definition of coherence time [see (A.2-8) and note that
g(0) = t}. The coherence time of monochromatic light is infinite since |g(7) =1
everywhere.
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Figure 10.1-3 Illustrative examples of the wavefunction, the magnitude of the complex degree
of temporal coherence |g(r)l, and the coherence time 7. for an optical field with {(a) short

coherence time and (b) long coherence time. The amplitude and phase of the wavefunction vary
randomly with time constants approximately equal to the coherence time. In both cases the
coherence time 7, is greater than the duration of an optical cycle. Within the coherence time, the
wave is rather predictable and can be approximated as a sinusoid. However, given the amplitude
and phase of the wave at a particular time, one cannot predict the amplitude and phase at times
beyond the coherence time,
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T
EXERCISE 10.1-1

Coherence Time. Verify that the following expressions for the complex degree of
temporal coherence are consistent with the definition of 7, given in (10.1-9):

|7l
(exp -— (exponential )
T.
A\ o
g(r) = wr?
exp( - W) (Gaussian).

4
L /

By what factor does |g(r)| drop as 7 increases from 0 to 7, in each case?

Light for which the coherence time 7, is much longer than the differences of the
time delays encountered in the optical system of interest is effectively completely
coherent. Thus light is effectively coherent if the distance cr, is much greater than all
optical path-length differences encountered. The distance

¢ (10.1-10)
Coherence Length

is known as the coherence length.

Power Spectral Density

To determine the average spectrum of random light, we carry out a Fourier decomposi-
tion of the random function U(¢). The amplitude of the component with frequency v is
the Fourier transform (see Appendix A)

V(v) = f:oU(t) exp( —j2mve) dr.

The average energy per unii area of those components with frequencies in the interval
between » and v + dv is {[V(¥)*) dv, so that (V) represents the energy spectral
density of the light (energy per unit area per unit frequency). Note that the complex
wavefunction U(z) has been defined so that V(¢) = 0 for negative v (see Sec. 2.6A).
Since a truly stationary function U(¢) is eternal and carries infinite energy, we
consider instead the power spectral density. We first determine the energy spectra
densttv o ne—tunc i oDserve v Wi vV Me—W b Anaine e

truncated Fourier transform

Ve(v) = f_T:sz(t)exp( —j2mvt) dt (10.1-11)
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and then determine the energy spectral density (EVT(V)E?‘} The power spectral density
is the energy per unit time (1 /T)(EVT(A»)Ez). We can now extend the time window o
infinity by taking the Hmit 7 — = The result

] ,
Sy = lim — V), {10.1-12)

i5 called the power spectral densify. It is nonzero enly for positive fregquencies. Because
(s} was defined such that /() FSPICSCRtS POWCE per unit area, of intensudy
{W/om?), 8{r)dv represents the average power per unil area carried by frequencies
between v and v + do, so that S{r} actually represents the miensity spectral density
(W fcm®-Hz), It is often referred to simply as the spectral demsity or the spectrum. The
total average mtensity 1s the integral

[ “;; S(x) dv. (10.1-13)

The autocorrelation function &{r), defined by (10.1-4}, and the spectral density
E{v} definad by (10.1-12} can be shown to form a Fourier transiorm pair {see Problem
1h1-2),

S{v) = /{ Giryexp{ ~j2wyr)dr. (10.1-14)
‘ Power Spectral Density

This relation is known as the Wiener~Khinchin theorem,

An optical wave representing a color image, such as the illustration in Fig. 10,14,
has a spectrum that varies with position 1 cach speciral profile shown corresponds 1o a
percetved color,
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Figure 1014 Variation of the speciral density 28 a function of wavelenglh at three positions in
a color tmape (Bouguet of Flowers in a3 White Vase, Henrt Matisse, Pushkin Museum of Fine
Arts, Moscow),
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Figure 10.1-5 Two random waves, the magnitudes of their complex degree of temporal

coherence, and their spectral densitius
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Spectral Width

The spectrum of light is often confined to a narrow band centered about a central
frequency v,. The spectral width, or linewidth, of light is the width Av of the spectral
density §(»). Because of the Fourier-transform relation between S(v) and G(r), their
widths are inversely related. A light source of broad spectrum has a short coherence
time, whereas a light source with narrow linewidth has a long coherence time, as
illustrated in Fig. 10.1-5. In the limiting case of monochromatic light, G(r) =
Iexp(j2myyr), so that the corresponding intensity spectral density S(v) = I8(v — vy)
contains only a single frequency component, v, Thus 7. =« and Av = 0. The
coherence time of a light source can be increased by using an optical filter to reduce its
spectral width. The resultant gain of coherence comes at the expense of losing light
energy.

There are several definitions for the spectral width. The most common is the full
width of the function S(») at half its maximum value (FWHM). The relation between
the coherence time and the spectral width depends on the spectral profile, as indicated
in Table 10.1-1 (see also Appendix A, Sec. A.2).

TADIE 4n 4 _4 Balad
TRARDLL 1U.1"1 neiat

and Coherence Time

Spectral Density Spectral Width Av gyppa
1
Rectangular -
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) 1 032
Lorentzian =
T, Te

2in2/7)'"* 066
Gaussian ~
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Another convenient definition of the spectral width is

(f:S(V) dv)z

Ay, = - (10.1-15)
[ 8wy v
0
By this definition it can be shown that
1
Ay, = — (10.1-16)
¢ Spectral Width

regardless of the spectral profile (see Exercise 10.1-2). If S(v) is a rectangular function
extending over a frequency interval from v, — B/2 to v, + B/2, for example, then
(10.1-15) yields Av, = B. The wwo definitions of bandwidth, Av, and Avpyim = Av,

differ by a factor that ranges from 1/7 = 0.32 to 1 for the profiles listed in Table
10.1-1.

EXERCISE 10.1-2

Relation Between Spectral Width and Coherence Time. Show that the coherence
time 7, defined by (10.1-9) is related to the spectral width Av, defined in (10.1-15) by the
simple inverse relation 7, = 1 /Ay, Hint: Use the definitions of Ay, and 7, the Fourier
transform relation between S(r) and G(7), and Parseval’s theorem [see (A.1-7) in
Appendix Al.

Representative spectral bandwidths for different light sources, and their associated
coherence times and coherence lengths /, = ¢, are provided in Table 10.1-2.

TABLE 10.1-2 Spectral Widths of a Number of Light Sources
Together with Their Coherence Times and Coherence
Lengths in Free Space

Source Ay, (Hz) 7. =1/Ap L. =cT,
Filtered sunlight (A, = 0.4-0.8 um) 3.75 x 10 2.67 fs 800 nm
Light-emitting diode (A, = 1 pm, A\, = 50 nm) 1.5 x 1013 67 fs 20 um
Low-pressure sodium lamp 5 x 10! 2 ps 600 pm
Multimode He-Ne laser (A, = 633 nm) 1.5 x 10° 0.67 ns 20 cm

Single-mode He-Ne laser (A, = 633 nm) 1 x 10° 1 ps 300 m
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EXAMPLE 10.1-1. A Wave Comprising a Random Sequence of Wavepackets.
Light emitted from an incoherent source may be modeled as a sequence of wavepackets
emitted at random times (Fig. 10.1-6). Each wavepacket has a random phase since it is
emitted by a different atom. The wavepackets may be sinusoidal with an exponentially
decaying envelope, for example, so that a wavepacket emitted at ¢ = 0 has a complex
wavefunction (at a given position)

f
U(t) = Apexp(—f—)exp(ﬂﬂn'vgt), t=>0

<

n r N
\u, i< u.

The emission times are totally random, and the random independent phases of the
be determined by performing the necessary averaging operations using the rules of mathe-
matical statistics. The result yields a complex degree of coherence given by g(r) =
exp(—|r|/7.)expl j2mv,7r) whose magnitude is a double-sided exponential function. The
corresponding power spectral density is Lorentzian, S(v) = (Av/2w)/[(v — v )* +
(Av/2)?), where Av = 1/, (see Table A.1-1 in Appendix A). The coherence time 7, in
this case is exactly the width of a wavepacket. The statement that this light is correlated
within the coherence time therefore means that it is correlated within the duration of an
individual wavepacket.

~Te—> gt

wft)

MMAMM ﬂ AN J - .
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Figure 10.1-6 Light comprised of wavepackets emitted at random times has a coherence time
equal to the duration of a wavepacket.

C. Spatial Coherence

Mutual Coherence Function

An important descriptor of the spatial and temporal fluctuations of the random
function U(r, ) is the cross-correlation function of U(r,t) and U(r,,t) at pairs of
positions r; and r,,

G(ry,ry,7) = {U*(ry, )U(ry,t + 7)) (10.1-17)
Mutual Coherence
Function

This function of the time delay 7 is known as the mutual coherence function. Its
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normalized form,

_ G(rlarZ’T)
g(ry,ry,7) = Ve (10.1-18)
[1(r)1(ry)] Complex Degree
of Coherence

is called the complex degree of coherence. When the two points coincide so that
r, =r, =r, (10.1-17) and (10.1-18) reproduce the temporal coherence function and
the complex degree of temporal coherence defined in (10.1-4) and (10.1-6) at the
position r, Ultimately, when 7 = 0, the intensity is /(r) = G(r,r,0) at the position r.

The complex degree of coherence g(r,,r,,7) is the cross-correlation coefficient of
the random variables U *(ry, t) and U(r,, t + 7). Its absolute value is bounded between
zero and unity,

0<lg(r,r,nl<1. (10.1-19)
It is therefore considered a measure of the degree of correlation between the
fluctuations at r; and those at r, at a time 7 later.

When the two phasors U(r, ) and U(r,, r) fluctuate independently and their phases
are totally random (each having equally probable phase between (O and 2m),
|g(ry,r,, 7)l = 0 since the average of the product U*(r|, t)U(r,, ¢ + 7) vanishes. The
light fluctuations at the two points are then uncorrelated. The other limit, |g(r,, r,, 1)
= 1, applies when the light fluctuations at r,, and at r, a time 7 later, are fully
correlated. Note that |g(r;,r,,0) is not necessarily unity, however by definition
lg(r,r,0) = 1.

The dependence of g(r,,r,, 7) on time delay and on the positions characterizes the
temporal and spatial coherence of light. Two examples of the dependence of
[g(r,r,, 7)l on the distance Ir; — r,| and the time delay  are illustrated in Fig. 10.1-7.

The temporal and spatial fluctuations of light are intimately related since light
propagates in waves and the complex wavefunction U(r, r) must satisfy the wave

lg(ry, rp, o) lg(ry, rp.7)l

fa) fb)

Filgure 10.1-7 Two examples of |g{ry,r,, 7)l as a function of the separation |ry — r,| and the
time delay 7. In (@) the maximum correlation for a given [r; — r,| occurs at 7 = 0. In (b) the
maximum correlation occurs at v, — ryl = ¢7.
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equation. This imposes certain conditions on the mutual coherence function (see
Exercise 10.1-3). To illustrate this point, consider, for example, a plane wave of random
light traveling in the z direction in a homogeneous and nondispersive medium with
velocity ¢. Fluctuations at the points r, = (0,0, z,) and r, = (0,0, z,) are completely
correlated when the time delay is 7 = 7, = |z, — z,|/c, so that |g(r;,r;, 75)| = 1. As a
function of 7, |g(r;, r;.7)| has a peak at 7 = 7, as illustrated in Fig. 10.1-7(b). This
example will be discussed again in Sec. 10.1D,

|
A= /IMmr 4N 2 N
EXERCISE 10.7-3

Differential Equations Governing the Mutual Coherence Function. In free space,
U(r, t) must satisfy the wave equation, V2U — (1 /¢%)32U/dt? = 0. Use the definition
(10.1-17) to show that the mutual coherence function G(r,r,, ) satisfies the two partial
differential equations

ViG - - o 0 10.1-20

- T3 = 1-20a
1 c? ar? ( )
ViG L 76 0 10.1-20b
: ¢ ar2 (10.1-200)

where V7 and sz are the Laplacian operators with respect to r, and r,, respectively.
]

Mutual Intensity
The spatial correlation of light may be assessed by examining the dependence of the
mutual coherence function on position for a fixed time delay 7. In many situations the
point 7 = 0 is the most appropriate, as in the example in Fig. 10.1-7(a). However, this
need not always be the case, as in the example in Fig. 10.1-7(4). The mutual coherence
function at 7 = 0,

G(ry,ry,0) = (U*(ry, 1)U(r,, 1)),

is known as the mmtual intensity and is denoted by G(r,,r,) for simplicity. The
diagonal values of the mutual intensity (r, = r, = r) provide the intensity I{r) = G(r,r).

When the optical path differences encountered in an optical system are much
shorter than the coherence length [, = c7,, the light may be considered to effectively
possess complete temporal coherence, so that the mutual coherence function is a
harmonic function of time:

G(ry,ry,7) = G(rq, 1) exp(j2mvyT), (10.1-21)
where v, is the central frequency. In this case the light is said to be quasi-monochro-

matic and the mutual intensity G(r,,r,) describes the spatial coherence completely.
The complex degree of coherence g(r,,r,, 0) is similarly denoted by g(r,, r;). Thus

G(r,,r
(r;.r2) o2 (10.1-22)
[I(rl)l(rZ)l Normalized
Mutual Intensity

g(r;,ry) =
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Figure 10.1-8 Two illustrative examples of the magnitude of the normalized mutual intensity
as a function of r; in the vizinity of a fixed point r,. The coherence area in (g) is smaller than
that in (b).

is the normalized mutual intensity. The magnitude |g(r,, r,)| is bounded between zero
and unity and is regarded as a measure of the degree of spatial coherence (when the
time delay 7 is zero). If the complex wavefunction U(r, 1) is deterministic, |g(r,, ry)| = 1
for all r; and r,, so that the light is completely correlated everywhere.

Coherence Area

The spatial coherence of quasi-monochromatic light in a given plane in the vicinity of a
given position r, is described by |g(r,, r,)| as a function of the distance |r, — r,|. This
function is unity when r; = r, and drops as |r, — r,| increases (but it need not be
monotonic). The area scanned by the point r; within which the function |g(r, r,)| is
greater than some prescribed value (3 or %, for example) is called the coherence area.
It represents the spatial extent of |g(ry,r,)| as a function of r, for fixed r,, as
illustrated in Fig. 10.1-8. In the ideal limit of coherent light the coherence area is
infinite,

The coherence area is an important parameter that characterizes random light. This
parameter must be considered in relation to other pertinent dimensions of the optical
system. For example, if the area of coherence is greater than the size of the aperture
through which light is transmitted, so that |g(r,,r,)| = 1 at all points of interest, the
light may be regarded as coherent, as if the coherence area were infinite. Similarly, if
the coherence area is smaller than the resolution of the optical system, it can be
regarded as infinitesimal, i.e., g(r,,r,) = 0 for practically all r; # r,. In this limit the
light is said to be incoherent.

Light radiated from an extended radiating hot surface has an area of coherence on
the order of A%, where A is the central wavelength, so that for most practical cases it

may be regarded as incoherent. Thus complete coherence and incoherence are only
idealizations representing the two limits of partial coherence.

Cross-Spectral Density
The mutual coherence function G(r,,r,,7) describes the spatial correlation at each
time delay 7. The time delay 7 = 0 is selected to define the mutual intensity G(r,,r,)
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= G(r,r,,0), which is suitable for describing the spatial coherence of quasi-mono-
chromatic light. A useful alternative is to describe spatial coherence in the frequency
domain by examining the spatial correlation at a fixed frequency. The cross-spectral
density (or the cross-power spectrum) is defined as the Fourier transform of G(r,, r,,7)
with respect to T

S(riry,v) = [ G(ry,ry,7) exp(—j2mvr) dr. (10.1-23)
o Cross-Spectral
Density

1Y 7L 1

When r| = r, = r, the cross-spectral density becomes the power-spectral
at position r, as defined in (10.1-14)
The normalized cross-spectral density is defined by

et QN
CIsIty oy}

o o | tao

S(rhrZ!V)
[S(r),r,,»)S(ry,15,0)] 7%

s(ry,ry,v) = (10.1-24)

and its magnitude can be shown to be bounded between zero and unity, so that it
serves as a measure of the degree of spatial coherence at the frequency v. It represents
the correlatedness of the fluctuation components of frequency v at positions r, and r,.

In certain cases, the cross-spectral density factors into a product of one function of
position and another of frequency, S(r,, r,, v) = G(r,r,)s{»), so that the spatial and
spectral properties are separable. The light is then said to be cross-spectrally pure. The
mutual coherence function must then also factor into a product of a function of
position and another of time, G(r,r,,7) = G(r,,r,)g(r), where g(7) is the inverse
Fourier transform of s(v). If the factorization parts are selected such that /s(v) dv =1,
then G(r,,r,) = G(r,,r,,0), so that G(r,,r,) is nothing but the mutual intensity.
Cross-spectrally pure light has two important properties:

® At a single position r, S(r,r, v} = G(r,r)s(v} = [(r)s(v). The spectrum has the
same profiles at all positions. If the light represents a visible image, it would
appear to have the same color everywhere but with varying brightness.

®= The normalized cross-spectral density

173
s(ry,ry,v) = G(ry, rz)/[G(rlarl)G(rp r)] 7 =g(ry,ry)
is independent of frequency. In this case the normalized mutual intensity g(r,,r,)

describes spatial coherence at all frequencies.

D. Longitudinal Coherence

In this section the concept of longitudinal coherence is introduced by taking examples
of random waves with fixed wavefronts, such as planar and spherical waves.

Partially Coherent Plane Wave

ra 1} 1
LOILIUCT 4 PIdIlic wdave

U(r, t) za(t - ;)exp[ﬂwvﬂ(t - %” (10.1-25)

traveling in the z direction in a homogeneous medium with velocity ¢. As shown in Sec.
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2.6A, U(r, t) satisfies the wave equation for an arbitrary function «(t). If 2(t) is a
random function, U(r, t) represents partially coherent light. The mutual coherence
function defined in (10.1-17) is

2274 2 72
G(r,,ry,7) = Ga('r - ——c——) exp[jZﬂ'vU('r - ——C——)], (10.1-26)

where z, and z, are the z components of ryand ry and G,(7) = (2™ (Da(t + 7)) is
the autocorrelation function of #(t), assumed to be muependcnt of t.

The intensity /(r) = G(r,r,0) = G,(0) is constant everywhere in space. Temporal
coherence is characterlzed by the time function G(r,r,7) = G(7)exp( )217-1/07) which
is uxd\,puuduut of pumuuu The bUllllJl\zA ucslcc of coherence is 5\1, T, 1) =
g(t)exp(j2mv 1), where g (1) = G (7)/G(0). The width of |g ()| = |g(r, r, 7)|, de-
fined by an expression similar to (10.1-9), is the coherence time 7. It is the same at all

nncitinng
PUSILIVILDY,

The power spectral density is the Fourier transform of G(r,r, 7) with respect to .
From (10.1-26), S(v) is seen to be equal to the Fourier transform of G,(7) shifted by a

freouency v. (in accordance with the freaguency shift property of the Fourier trancform
frequency v, \In accordance with (ne Irequency st property of (€ Fourier ransiorm

defined in Appendix A, Sec. A.1). The wave therefore has the same power spectral
density everywhere in space.
The spatial coherence propertics are described by

2, — 2 2avg(z, — 2
G(ry,r,,0) = Ga(l—c-——z—) exp[ O(Cl 2) } {10.1-27)

and its normalized version,

z,— 2 J2mva(z, — 2
g(rlvr2’0) :ga(_];""z)cxp[ 0( ! 2)jl (101'28)

c

If the two points r; and r, lie in the same transverse plane, i.e., z, =z,, then
lg(ry,r5,0) = g, 0) = 1. This means that fluctuations at points on a wavefront (a
plane normal to the z axis) are completely correlated; the coherence area in any
transverse plane is infinite (Fig. 10.1-9). On the other hand, fluctuations at two points
separated by an axial distance z, — z, such that |z, — z,|/c > 7, or |z, — 2} > [,
where {, = c7, is the coherence length, are approximately uncorrelated.

ic hall 44
fr) Stv) |
lafrh vl h A
< Te Av
0 T 0 L] v
\ / Correlated
Uncorrelated points
points

Figure 10.1-9 The fluctuations of a partially coherent plane wave at points on any wavefront
(transverse plane) are completely correlated, whereas those at points on wavefronts separated by
an axial distance greater than the coherence length /. = ¢, are approximately uncorrelated.
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In summary: The partially coherent planc wave is spatially coherent within each
transverse plane, but partially coherent in the axial direction. The axial (longitudinal)
spatial coherence of the wave has a one-to-one correspondence with the temporal
coherence. The ratio of the coherence length [, = c7, to the maximum optical path
difference /_,, in the system governs the role played by coherence. If /. > /., the
wave is effectively completely coherent. The coherence lengths of a number of light
sources are listed in Table 10.1-2.

A partially coherent spherical wave is described by the complex wavefunction (see Secs.
2.2B and 2.6A)

Partially Coherent Spherical Wave

U(r,t) = %a(t - %) exp[jzwvo(t - é)} (10.1-29)

where z(¢) is a random function. The corresponding mutual coherence function is

1 r, —r, ) ry 1
G(ry,ry,7) = ﬁGa(T - )exp[_ﬂwvo(q’ - )], (10.1-30)
172

with G (1) = (2 * ()2t + 7)).

The intensity I(r) = G,(0)/r? varies in accordance with an inverse-square law. The
coherence time 7, is the width of the function |g ()l = 1G,(7)/G(0)l. It is the same
everywhere in space. So is the power spectral density. For 7 = 0, fluctuations at all
points on a wavefront (a sphere) are completely correlated, whereas fluctuations at
points on two wavefronts separated by the radial distance |r, — r|| > [, = c7. are
uncorrelated (see Fig. 10.1-10).

An arbitrary partially coherent wave transmitted through a pinhole generates a
partially coherent spherical wave. This process therefore imparts spatial coherence to
the incoming wave (points on any sphere centered about the pinhole become com-
pletely correlated). However, the wave remains temporally partially coherent, Points at
different distances from the pinhole are only partially correlated. The pinhole imparts
spatial coherence but not temporal coherence to the wave.

Suppose now that an optical filter of very narrow spectral width is placed at the
pinhole, so that the transmitted wave becomes approximately monochromatic. The
wave will then have complete temporal, as well as spatial, coherence. Temporal
coherence is introduced by the narrowband filter, whereas spatial coherence is im-
parted by the pinhole, which acts as a spatial filter. The price for obtaining this ideal
wave 18, of course, the loss of optical energy introduced by the temporal and spatial
filtering processes.

‘_c‘\'c\‘/

’\i\‘\i\\\\\\\\\\\\\\

ol W)))))»))))))

Uncorrelated Figure 10.1-10 A partially coherent spherical wave has
wavefronts complete spatial coherence at all points on a wavefront,
Wavefront  but not at points with different radial distances.



360 STATISTICAL OPTICS

10.2 INTERFERENCE OF PARTIALLY COHERENT LIGHT

The interference of coherent light was discussed in Sec. 2.5. This section is devoted to
the interference of partially coherent light.

A. Interference of Two Partially Coherent Waves

The statistical properties of two partially coherent waves U, and U, are described not
only by their own mutual coherence functions but also by a measure of the degree to
which their fluctuations are correlated. At a given position r and time ¢, the intensities
of the two waves are I; = (IUIIZ) and I, = <|U2|2), whereas their cross-correlation is
described by the statistical average G, = (U*U, >, and its normalized version

WY
(1,1)""*

——
-
o
(1]
R

S

o .
a12

When the two waves are superposed, the average intensity of their sum is
I=<U + Uy*y = QU + 0,15 + (URFU,Y + (U U3+

=L +L+G,L+Gs=1,+1+2Re{G}

=1+ I, + 2(1, 1) Re{g,,}, (10.2-2)

from which
I=1,+1,+ 2(1,1,) g5l cos @, (10.2-3)
Interference Equation

where ¢ = arg{g,,} is the phase of g,,. The third term on the right-hand side of
(10.2-3) represents optical interference.
There are two important limits:

» For two completely correlated waves with g, = exp(j¢) and |g,| = 1, we recover
the interference formula (2.5-4) for two coherent waves of phase difference ¢.

s For two uncorrelated waves with g, =0, I =1 +1,, so that there is no
interference.

in the general case, the normalized intensity / versus the phase ¢ assumes the form
of a sinusoidal pattern, as shown in Fig. 10.2-1. The strength of the interference is
measured by the visibility %7, also called the modulation depth or the contrast of the
interference pattern
Imax - 1min

Imax + 1min

where 7., and 1_;, are the maximum and minimum values that / takes as ¢ is varied.
Since cos ¢ stretches between 1 and —1, (10.2-3) yields

AL

= — . 10.2-4
VRIS hie (0.2
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Figure 10.2-1 The normalized intensity //2], of the sum of two partially coherent waves of
equal intensities /; = I, = I; as a function of the phase ¢ of their normalized cross-correlation

o . This sinusoidal nattern has v1=1h||1h1 e o]
gi2- This sinusoidal pattern has visibilit : 18 i2n
Tha yigihal 10 tharafara mranartinnal tn tha ochonliite volite ~AF tha maresolicad Avaoo
ine vmluuuy 1S tNEreiore proporticnar to tne aosoiule vaiie oI tne normaiiized cross-
correlation |g .| If I, = L5,
7= gyl (10.2-5)
Visibility

The interference equation (10.2-3) will now be applied to a number of special cases
to illustrate the effects of temporal and spatial coherence on the interference of
partially coherent light.

B. Interference and Temporal Coherence

Consider a partially coherent wave U(r) with intensity [, and complex degree of
temporal coherence g(r) = (U*()U(s + 1)) /1. If U(r) is added to a replica of itself
delayed by the time 7, U(t + 7), what is the intensity / of the superposition?

Using the interference formula (10.2-3) with U, = U(¢), U, = Ut + 1), I, = I, = I,
and g, = (U*U, /I, = KUXUG + 1)) /1, = g(7), we obtain

I =201+ Re{g(r)}] = 2L4[1 + |g{(7)los &(7)]. (10.2-6)

where ¢(7) = arg{g(7)}. The ability of a wave to interfere with a time delayed replica of
itself is governed by its complex degree of temporal coherence at that time delay.

A wave may be added to a time-delayed replica of itself by using a beamsplitter to
generate two identical waves, one of which is made to travel a longer optical path
before the two waves are recombined using another (or the same) beamsplitter. This
may be achieved by using a Mach-Zehnder or a Michelson interferometer, for example
(see Fig. 2.5-3).

Consider, as an example, the partially coherent plane wave introduced in Sec. 10.1D
[equation (10 1-25)] whose complex degree of temporal coherence 1s g(r) =

AT TUGT): = P
of lg (1), is the coherence time. Substituting into (10.2- 6) we obtain

1=2I{1 + |g (7)lcos[2mvyr + @, (1)]}), (10.2-7)

where ¢, (7) = arg{g ()}
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Figure 10.2-2 The normalized intensity { /21, as a function of time delay 7 when a partially
coherent plane wave is introduced into a Michelson interferometer. The visibility equals the
magnitude of the complex degree of temporal coherence.

The relation between [ and 7 is known as an interferogram (Fig. 10.2-2). Assuming
that Ay, < v, the functions |g (7)| and ¢,(7) vary slowly in comparison to the period
1/v, since Av, = 1/7,. < v,. The visibility of this interferogram in the vicinity of a
particular time delay 7 is %"= |g(7)| = [g,{(7)l. It has a peak value of unity near 7 = 0
and vanishes for 7 > 1, i.e.,, when the optical path difference is much greater than the
coherence length I = cr.. For the Michelson interferometer shown in Fig. 10.2-2,
7 = 2d, — d,)/c. Interference occurs only when the optical path difference is smaller
than the coherence length.

The magnitude of the complex degree of temporal coherence of a wave |g(7) may
therefore be measured by monitoring the visibility of the interference pattern as a
function of time delay. The phase of g(7) may be measured by observing the locations
of the peaks of the pattern.

It is revealing to write (10.2-6) in terms of the power spectral density. Using the
Fourier transform relation between G(7) and S(v),

G(r)=1g(7) = f S(v)exp(j2mvr) dv,
0
substituting into (10.2-6), and noting that S(») is real and ]:S(v) dv = I, we obtain
1=2["Sw)[1 + cos(2mvr)] dv. (10.2-8)
0

This equation can be interpreted as a weighted superposition of interferograms
produced by each of the monochromatic components of the wave, Each component »
produces an interferogram with period 1/v and unity visibility, but the composite
interferogram has reduced visibility as a result of the different

interferogram has reduced visibility as a result of the different periods.
[~4 o | o

Equation (10.2-8) suggests a technique for determining the spectral density S(v) of
a light source by measuring the interferogram I versus 7 and then inverting it by
means of Fourier-transform methods. This technique is known as Fourier-transform
spectroscopy.

C. Interference and Spatial Coherence

The effect of spatial coherence on interference is demonstrated by considering the
Young’s double-pinhole interference experiment, discussed in Exercise 2.5-2 for coher-
ent light. A partially coherent optical wave U(r, ¢) illuminates an opaque screen with
two pinholes located at positions r; and r,. The wave has mutual coherence function
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matic and the normalized mutual intensity at the pinholes is gr,, v4). The normalized intensity
{721, in the observation plane at a large distance is a sinusoidal nciion of x with period A /8
and visibility 7= {g{r,. v}
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The intensities at the pinholes are assumed 1o hs equai

Light is diffracted in the form of two spherical waves centered at the pinholes. The
two waves interfere, and the iontensity § of their sum 15 observed al a poind ¢ in the
observation plane a distance & from the screen sufficiently large so that the paraboloidal
approximation is applicable. In Cartesian coordinates {(Fig. 1023} ¢, = (~g, 0,0},
£y = {2, 0,0), and r = (5,0, ¢} The intensity is observed as a function of x. An
imporiani geometrical parameter is the angle # = 2g/d subtended by the two pin-
holes.

in the paraboloidal (Fresnel) approximation [see (2.2-16)}, the two diffracted spheri-
cal waves are approximately related to I, t) by
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Up(r.t) o Ulry, 1 = } = L’érz,i - % {10.2-9b}
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and have approximaiely equal intensities, {; = §, = I;. The normalized cross-correla-
tion between the fwo waves at ¢ 1S

Ut U 1) |
812 = g(i';,i'z,ﬂ"x}, (10,24(}}
iy
where
e — r,l Ir*nE {x+a} ~{x —a) Zg;x ¢
= = ~x {18.2-11
- ¢ 1dc g o { )

is the difference in the time delays encountered by the two waves.
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Substituting (10.2-10) into the interference formula (10.2-3) gives rise to an observed
intensity / = H(x):

I(x) = 21,[1 + |g(ry,ry, 7,)|cose, ], (10.2-12)

where ¢, = arg{g(r,,r,, 7,)}. This equation describes the pattern of observed intensity
as a function of position x in the observation plane, in terms of the magnitude and
phase of the complex degree of coherence at the pinholes at time delay 7, = 6x/c.

Quasi-Monochromatic Light
If the light is quasi-monochromatic with central frequency v, i.e., if g(r,,r,,7) =

E VN D ko]

g{r,, ry)exp{j2mv,7), then (10.2-12) gives

2o
I(x) = 2[0[1 + WCOS(Tx + w)}, (10.2-13)

where A = ¢/vg, #°=|g(r,xy)l, 7, = 6x/c, and ¢ = arg{g(r,,r,)}. The interference
fringe pattern is therefore sinusoidal with spatial period A /6 and visibility @ In
analogy with the temporal case, the visibility of the interference pattern equals the
magnitude of the complex degree of spatial coherence at the two pinholes (Fig. 10.2-3).
The locations of the peaks depend on the phase ¢.

interference with Light from an Extended Source

If the incident wave in Young’s interferometer is a coherent plane wave traveling in the
z direction, U(r, t) = exp(—jkz) exp(j2wv,yt), then g(r,,ry) = 1, so that |g(r,,r,)| = 1,
and arg{g(r,, r,)} = 0. The interference pattern therefore has unity visibility and a
peak at x = 0. But if the illumination is, instead, a tilted plane wave arriving from a
direction in the x-z plane making a small angle 6, with respect to the z axis, i.e.,
Ulr, t) = expl —j(kz + k8, x)]exp(j2mvgt), then g(ry,r,) = exp(—jk8,2a). The visi-
bility remains # = 1, but the tilt results in a phase shift ¢ = —k8,2a = —2m8,2a/A,
so that the interference pattern is shifted laterally by a fraction (2a8,/A) of a period.
When ¢ = 2, the pattern is shifted one period.

Suppose now that the incident light is a collection of independent plane waves
arriving from a source that subtends an angle 6, at the pinhole plane (Fig. 10.2-4). The
phase shift ¢ then takes values in the range +2#(6,/2)2a/A = +2w8.a/A and the
fringe pattern is a superposition of displaced sinusoids. If 6, = A /2a then ¢ takes on
values in the range +r, which is sufficient to wash out the interference pattern and
reduce its visibility to zero.

We conclude that the degree of spatial coherence at the two pinholes is very small
when the angle subtended by the source is 8, = A /2a (or greater). Consequently, the
distance

(1 0.2-14)
Coherence Distance

| >

p. =
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Figure 10.2-4 Young’s interference fringes are washed out if the illumination emanates from a
source of angular diameter 8, > A/2a. If the distance 2a is smaller than A/8,, the fringes
become visible.

is a measure of the coherence distance in the plane of the screen and

A, = (—)2 (10.2-15)

is a measure of the coherence area of light emitted from a source subtending an angle
6,. The angle subtended by the sun, for example, is 0.5°, so that the coherence distance
for filtered sunlight of wavelength A is p. = A/8;, = 1154, At A = 0.5 pum, p, =
57.5 um.

A more rigorous analysis (see Sec. 10.3C) shows that the transverse coherence
distance p. for a circular incoherent light source of uniform intensity is

A
po=122—. (10.2-16)

Us

Effect of Spectral Width on Interference

Finally, we examine the effect of the spectral width on interference in the Young’s
double-pinhole interferometer. The power spectral density of the incident wave is
assumed to be a narrow function of width Ay, centered about »,, and Ay, << »,. The

complex degree of coherence then has the form
g(ry,r;,7) = g,(r .5, 7) exp(j27v,7), (10.2-17)

where g,(r,,r,,7) is a slowly varying function of 7 (in comparison with the period
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coherent light the number of observable fringes is the ratio of the coherence length to the central
wavelength, or the ratio of the central frequency 1o the spectral linewidth.

1/v4) Substituting {10.2-17} into (10.2-12), we obtain

P 2ard \
} {10.2-18}

f{xy = Z}’Q{l + 7, cos{""-;:"—x + @,

where 7 = g ry, a7 W o, = arglg ey, vy, 70} 7, = Bx/c, and & = ¢ /vy

Thus the interference pattern is sinusoidal w:th permd A/f} bui w:ih @ varying
visihility 7 and varyving phase ¢, equal to the magnitude dnd phase of the complex
dsgrse of coherence al the twa pinholes, respectively, evaluated at the time delay
= 8x /o Wig try, Fy, r}i = | at ¢ = {, decreases with increasing +, and vanishes for

73 or,, the visibility 77 = 1 at x = ), decreases with increasing x, and vanishes
for x > x, = cr, /8. The mterference patiern 18 then visible over a distance

K= — {10.2-19}

where { = ¢r, 5 the coherence length and & is the angle subtended by the two
pinholes {(Fig. 10.2-5).
The number of observable fringes is thus x, /(3 /8) = { /A = ¢ /& = vy /by, It

equals the ratio [ /A of the coherence lengih m the cemral wcweien,g,ah or the ratio
PR f tho sar \fr-‘\.i Frarmianey tm the HnewiAdrh loaeie 1§ 1ol O = 1 38 3 the
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source 15 not spatially coherent, the visibility will be further reduced and even fewer
fringes will be observable,

0.3 TRANSMi%SiGN GFPARTALLY EQHERENT LIGHT

The transmission of coherent light through thin optical components, through apertures,
angd through free space was discussed 1 Chaps. 2 and 4. Ta this section we pursue the
same goal for guasi-mopochromatic partially coherent light. We assume that the
spectral width is sufficiently small 5o that the coherence fength [, = ¢r, = ¢ /&y, 15
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much greater than the differences of optical path lengths in the system. The mutual
coherence function may then be approximated by G(r,r,, r) = G(r,ry)exp(j2mv,r),
where G(ry,r,) is the mutual intensity and v, is the central frequency.

It is noted at the outset that the transmission laws that apply to the deterministic
function U(r), which represents coherent light, apply also to the random function U(r),
which represents partially coherent light. However, for partially coherent light our
interest is in the laws that govern statistical averages: the intensity I(r) and the mutual
intensity G(r,,r,).

A. Propagation of Partially Coherent Light

Transmission Through Thin Optical Components

When a partially coherent wave is transmitted through a thin optical component
characterized by an amplitude transmittance #(x,y) the incident and transmitted
waves are related by U,(r) = #(r)U/(r), where r = {x, y) is the position in the plane of
the component (see Fig. 10.3-1). Using the definition of the mutual intensity, G(r ,r,)
= (U *(r,)U(r,)), we obtain

Gy(ry, 1) =¢*(r))2(r)G(ry,15), (10-3‘1)

where G (ry,r;) and G,(r,,r,) are the mutual intensities of the incident and transmit-
ted light, respectively.
Since the intensity at position r equals the mutual intensity atr; = r, =,

L(r) = 12(r)]*I|(r). (10.3-2)
The normalized mutual intensities defined by (10.1-22) therefore satisfy
|82(r1,r2)| = |8[(r1,r2)]' (10,3-3)

Although transmission through a thin optical component may change the intensity of
partially coherent light, it does not alter the magnitude of its degree of spatial
coherence. Naturally, if the complex amplitude transmittance of the component itself
were random, the coherence of the transmitted light would be altered.

Transmission Through an Arbitrary Optical System

We next consider an arbitrary optical system—one that includes propagation in free
space or transmission through thick optical components. It was shown in Chap. 4 that
the complex amplitude U,(r) at a point r = (x, y) in the output plane of such a system
is generally a weighted superposition integral comprising contributions from the
complex amplitudes U,(r) at points r’ = (x’, y’) in the input plane (see Fig. 10.3-2),

Uy(r) = [h(r;r’)Ul(r’) dr’, (10.3-4)

.
Up(r)

Figure 10.3-1 The absolute value of the degree of spatial
coherence is not altered by transmission through a thin optical
component.
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Figure 16.3-2 An opticai system is characterized by lis impuise-response funciion A{r;r’).

where A(r;r’) is the impuise-response function of the system. The integral in (10.3-4) is
a double integral with respect to r’ = (x’, y’) extending over the entire input plane.

To translate this relation between the random functions Uxr) and Ur) into a
reiation between their mutuai intensities, we substitute (i0.3-4) into the definition
Gy(ry,ry) = (U DUxr,)) and use the definition G(r,r,) = (U*{r ULr,)) to
obtain

Golrr,13) = [ [r(riir)h(rzi04)G (xf, vg) dr drs. (10.3-5)
Image
Mutual Intensity

If the mutual intensity G,(r;,r,) of the input light and the impulse-response function
h(r; r') of the system are known, the mutual intensity of the output light G,(r,,r,) can
be determined by carrying out the integrals in (10.3-5).

The intensity of the output light is obtained by using the definition /,(r) = G,(r, r),
which reduces (10.3-5) to

L(r) = ffh*(r;r{)h(r;rg)Gl(r{,rg) dr{ drj. (10.3-6)

Image Intensity

To determine the intensity of the output light, we must know the mutual intensity of
the input light. Knowledge of the input intensity I,(r) by itself is generally not sufficient to
determine the output intensity [,(r).

B. Image Formation with Incoherent Light

We now consider the special case when the input light is incoherent. The mutual
intensity G (r;,r,) vanishes when r, is only slightly separated from r; so that the
coherence distance is much smaller than other pertinent dimensions in the system (for
example, the resolution distance of an imaging system). The mutual intensity may then
be written in the form G (r;,r,) = [[(r I (r,))]'?g(r, — ry), where glr, ~r,)is a

very narrow function. When G(r,, r,) appears under the integrai in (10.3-5) or (10.3-6)
it is convenient to replace g(r, — r,) with a delta function, g(r; — r,) = c8(r, — r,),
where o = [g(r) dr is the area under g(r), so that

Gy(ry,ry) = ‘7[[1("1)[1(1'2)]]/25(1‘1 - ry). (10.3-7)
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Since the mutual intensity must remain finite and §(0) — oo, this equation is clearly not
generally accurate. It is valid only for the purpose of evaluating integrals such as in
(10.3-6). Substituting (10.3-7) into (10.3-6), the delta function reduces the double
integral into a single integral and we obtain

I(r) = f]l(r’)h,-(r;r’) dr’, (10.3-8)
Imaging Equation
{Incoherent Mumination)

where

hi(r;r’) =0|h(r;r’)|2. (10.3-9)
Impulse-Response Function
{Incoherent lllumination)

Under these conditions, the relation between the intensities at the input and output
planes describes a linear system of impulse-response function A,(r;r’), also called the
point-spread function. When the input light is completely incoherent, therefore, the
intensity of the light at cach point r in the output plane is a weighted superposition of
contributions from intensities at many points r’ of the input plane; intereference does
not occur and the intensities simply add (Fig. 10.3-3). This is to be contrasted with the
completely coherent system, for which the complex amplitudes rather than intensities
are related by a superposition integral, as in (10.3-4),

In certain optical systems the impulse-response function A(r;r’) is a function of
r — r’, say A(r — r’). The system is then said to be shift invariant or iseplanatic (see
Appendix B). In this case A/ r;r’) = A(r — r’). The integrals in (10.3-4) and (10.3-8)
are then two-dimensional convolutions and the systems can be described by transfer
functions 2¢(v,, »,) and 3¢{v,, v,), which are the Fourier transforms of A(r) = A(x, y)
and A(r) = h{x,y), respectively.

As an example, we apply the relations above to an imaging system. It was shown in
Sec. 4.4C that with coherent illumination, the impulse-response function of the

{a) —_— h(r,r')

-
o

)
(b) )——_'D- hi(r.r")

_

Figure 10.3-3 (a) The complex ampiitudes of light at the input and output planes of an optical
system illuminated by coherent light are related by a linear system with impulse-response function
A(r;r’). (b) The intensities of light at the input and output planes of an optical system illuminated
by incohegent light are related by a linear system with impulse-response function Afr;r’) =
olhlr e )"
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Figure 10.3-4 A single-lens imaging system.

single-lens focused imaging system illustrated in Fig. 10.3-4 in the Fresnel approxima-
tion is

X y
h(r)aP(A—(J'z-’A_dz)’ (103-10)

where P(v,,v,) is the Fourier transform of the pupil function p(x, ¥) and d, is the
distance from the lens to the image plane. The pupil function is unity within the
aperture and zero elsewhere.

When the illumination is quasi-monochromatic and spatially incoherent, the intensi-
ties of light at the object and image plane are linearly related by a system with
impulse-response function

2

hy(r) = alh(r)l* « , (10.3-11)

x y
P _—
(,\dz’,\dz)

where A is the wavelength corresponding io the central frequency v,

EXAMPLE 10.3-1. [Imaging System with a Circular Aperture. If the aperture is a
circle of radius a, the pupil function p(x,y)=1 for x,y inside the circle, and 0
elsewhere, Its Fourier transform is

a11(2m/ a) 1/2
P(v,,v,) = —r )

v =(V3‘+V3

o »

here . he afa - [ on ee A

function of the coherent system is obtained by substituting into (10.3-10),

Ji(2wm,
h(x,y) « [——l( ’) L= () (10.3-12)

TVsP



TRANSMISSION OF PARTIALLY COHERENT LIGHT THROUGH OPTICAL SYSTEMS 371
where

Vo= —— f=—. (10.3-13)

For incoherent illumination, the impulse-response function is therefore

11(21”’3[’) ?

10.3-14
o (10:3-14)

hi(x’y) o ’V

The response functions A(x, y) and Ax, y) are illustrated in Fig. 10.3-5. Both func-
tions reach their first zero when 2wpp = 3832, or p = p, = 3.832/27v, = 3.832A /78,

from which

A ) .
Py = 1.225. (10.3-15)
Two-Point Resolution

Thus the image of a point (impulse) in the input plane is a patch of intensity £,(x, y) and
radius p,. When the input distribution is compaussd of yeo polints Gripulies) separated by a
distance p,, the image of one point vanishes at the center of the image of the other point.
The distance p, is therefore a measure of the resolution of the imaging system.

The transfer functions of linear systems (see Appendix B) with the impulse-response
functions A(x, y) and hx, y) are the Fourier transforms (see Appendix A),

1, v, <

H(ve,vy) = { (10.3-16)

0, otherwise,

and

21172
2 -1 Y % |4 Vo <>
() = e |0 T 2 » B < (10.3417)
0, otherwise,

where v, = (v + v})'/% Both functions have been normalized such that their values at
v, = 0 are 1. These functions are illustrated in Fig. 10.3-5. For coherent illumination, the
transfer function is flat and has a cutoff frequency v, = 6 /2 lines/mm. For incoherent
illumination, the transfer function drops approximately linearly with the spatial frequency
and has a cutoff frequency 2¢, = 8 /A lines/mm.

If the object is placed at infinity, i.e., d; = %, then d, = f, the focal length of the lens.
The angle 6 = 2a/f is then the inverse of the lens F-number, F, = f/2a. The cutoff
frequencies v; and 2v, are related to the lens F-number by

1

2AF
Cutoff frequency = * (10.3-18)

(lines /mm)

(coherent illumination)

——  (incoherent illumination).
AF,

One should not draw the false conclusion that incoherent illumination is superior to
coherent illumination since it has twice the spatial bandwidth. The transfer functions of the
two systems should not be compared directly since one describes imaging of the complex
amplitude, whereas the other describes imaging of the intensity.



372 STATISTICAL OPTICS

1 1
impulse- hip) hife) =1.224F,
response Py =1t
functions
o
0 OO »
|

=Y

8

1 R ! XHitvp)
Transfer v = 1
functions § 24K

0 0 Y

0 Vs vp 0 2vg Z’

n

fa) (b)

Figure 10.3-5 Impulse-response functions and transfer functions of a single-lens focused
diffraction-limited imaging system with a circular aperture and F-number Fy under (a)
coherent and (&) incoherent illumination,

C. Gain of Spatial Coherence by Propagation

Equation (10.3-5) describes the change of the mutual intensity when the light propa-
gates through an optical system of impulse-response function A(r;r’). When the input
light is incoherent, the mutual intensity G,(r,,r,) may be replaced by
a[I{r)I(r)]'/28(r, — r,) and substituted in the double integral in (10.3-5) to obtain
the single integral,

Gy(r,,ry) = a[h*(rl;r)h(r2;r)11(r) dr. (10.3-19)
Image
Mutual Intensity

It is evident that the received light is no longer incoherent. In general, light gains
spatial coherence by the mere act of propagation. This is not surprising. Although light
fluctuations at different points of the input plane are uncorrelated, the radiation from
each point spreads and overlaps with that from the neighboring points. The light
reaching two points in the output plane comes from many points of the input plane,
some of which are common (see Fig. 10.3-6). These common contributions create
partial correlation between fluctuations at the output points.

This is not unlike the transmission of an uncorrelated time signal (white noise)
through a low-pass filter. The filter smooths the function and reduces itz spectral
bandwidth, so that its coherence time increases and it is no longer uncorrelated. The

. . ug . v . , .
spatial bandwidth and therefore increases the coherence area.
Van Cittert — Zernike Theorem

There is a mathematical similarity between the gain of coherence of initially incoherent
light propagating through an optical system, and the change of the amplitude of
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¥ SUUTLC

Figure 10.3-6 Gain of coherence by propagation is a result of the spreading of light. Although
the light is completely uncorrelated at the source, the light fluctuations at points 1 and 2 share a
common origin, the shaded area, and are therefore partially correlated.

coherent light traveling through the same system. In reference to (10.3-19), if the
observation point r; is fixed, for example at the origin 0, and the mutual intensity
G,(0,r,) is examined as a function of r,, then

G,(0,r,) = a'fh*({);r)h(rz;r)],(r) dr. (10.3-20)

Defining Uxr,) = G,(0,r,) and U(r) = oh*(0;r)I(r), (10.3-20) may be written in the
familiar form

Uy(r,) = fh(rz; r)U,(r) dr, (10.3-21)

which is exactly the integral (10.3-4) that governs the propagation of coherent light.
Thus the observed mutual intensity G(0,r,) at the output of an optical system whose
input is incoherent is mathematically identical to the observed complex amplitude if a
coherent wave of complex amplitude U,(r) = ch*(0; r)/,(r) were the input to the same
system.

As an example, suppose that the incoherent input wave has uniform intensity and
extends over an aperture p(r) [ p(r) = 1 within the aperture, and zero elsewhere],
i.e,, I(r) = p(r); and assume that the optical system is free space, i.e., A(r’;r) =
exp(—jklr’ — r[)/Ir’ — r[. The mutual intensity G,(0,r,) is then identical to the
amplitude U,(r,) obtained when a coherent wave with input amplitude U(r) =
ah*(0; r)p(r) = ap(r)exp(jkr)/r is transmitted through the same system. This is a
spherical wave converging to the point 0 in the output piane and transmitted through
the aperture.

This similarity between the diffraction of coherent light and the gain of spatial
coherence of incoherent light traveling through the same system is known as the
Van Cittert-Zernike theorem.

Consider the optical system of free-space propagation between two parallel planes
separated by a distance ¢ (Fig. 10.3-7). Light in the input plane is quasi-monochro-
matic, spatially incoherent, and has intensity /(x, y) extending over a finite area. Thé
distance d i1s sufficiently large so that for points of interest in the output plane the
Fraunhofer approximation is valid. Under these conditions the impulse-response func-
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Figure 10.3-7 Radiation from an incoherent source in free space.

tion of the optical system is described by the Fraunhofer diffraction formula [see
(4.2-3)]

x*+y?
)CXD(jZ’ﬂ

Ad

' xx’ 4+ yy'
h(r;r’) :hﬂexp(—jw ———),

10.3-22
Ad ( )
where r = (x, y,d) and r’ = (x’, y’,0) are the coordinates of points in the output and
input planes, respectively, and Ay = (j/Ad)exp(—j2md/)) is a constant.

To determine the musual coherence function G(x,, y,, X,, ¥,) at two points (x,, y,)
and (x,, y,) in the output plane, we substitute (10.3-22) into (10.3-19) and obtain

|G(x11 YI7x21 YZ)l =0

)

= 27
ff exp{fﬁ[(xz —x)x + (y; —yl)y]} I(x,y)dxdy
(10.3-23)

where o, = olh,|* = o/A*d? is another constant. Given I(x, y), one can easily deter-
mine |G(x,, y;, X5, ¥,)| in terms of the two-dimensional Fourier transform of I(x, y),

F(vg,v,) = [:ff exp| j2m(v,x + v,y)|I(x,y) dedy  (10.3-24)

evaluated at », = (x; — x,)/Ad and v, = (y, — y;)/Ad. The magnitude of the corre-
sponding normalized mutual intensity is

X — X, V., — V. /
5 7

"ZM SV 'H/J’(0,0). (10.3-25)

| I
|g(x1,y1,x2,y2)| = lj{

This Fourier transform relation between the intensity profile of an incoherent source
and the degree of spatial coherence of its far field is similar to the Fourier transform
refatio €
Sec. 4.2A). The similarity is expected in view of the Van Cittert—Zernike theorem.
The implications of (10.3-25) are profound. If the area of the source, i.e., the spatial
extent of I(x, y), is small, its Fourier transform .#(»,, v ) is wide, so that the mutual
intensity in the output plane extends over a wide area and the area of coherence in the
output plane is large. In the extreme limit in which light in the input plane originates
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from a point, the area of coherence is infinite and the radiated field is spatially
completely coherent. This confirms our earlier discussions in Sec. 10.1D regarding the
coherence of spherical waves. On the other hand, if the input incoherent light
originates from a large extended source, the propagated light has a small area of
coherence.

EXAMPLE 10.3-2. Radiation from an Incoherent Clrcular Source. For input light
with uniform intensity /(x, y) = I, confined to a circular aperture of radius a, (10.3-25)
il A
yi€ias

(10.3-26)

| 2J(7pb, /1) |
|g(x1:- Y!:xza .‘/2)| :l% )

mpl /A |

where p = [(x, — x))? + (¥, = y,)?1'/? is the distance between the two points, 8, = 2a /d
is the angle subtended by the source, and J,(*) is the Bessel function. This relation is
plotted in Fig, 10.3-8. The Bessel function reaches its first zero when its argument is 3.832.
We can therefore define the area of coherence as a circle of radius p, = 3.832(A /76,), so
that

A
pe= 122 (10.3-27)
* Coherence Distance

A similar result, (10.2-14), was obtained using a less rigorous analysis. The area of
coherence is inversely proportional to 052. An incoherent light source of wavelength
A =06 um and radius 1 cm observed at a distance d = 100 m, for example, has a
coherence distance p,. = 3.7 mm.
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Figure 10.3-8 The magnitude of the degree of spatial coherence of light radiated from
an incoherent circular light source subtending an angle 8, as a function of the separa-
tion p.

Measurement of the Angular Diameter of Stars;

The Michelson Stellar Interferometer

Equation (10.3-27) is the basis of a method for measuring the angular diameters of
stars. If the star is regarded as an incoherent disk of diameter 24 with uniform
brilliance, then at an observation plane a distance d away from the star, the coherence
function drops to 0 when the separation between the two observation points reaches
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Figure 10.3-9 Michelson stellar interferometer. The angular diameter of a star is estimated by
measuring the mutual intensity at two points with variable separation p using Young’s double-slit
interferometer. The distance p between mirrors M; and M, is varied and the visibility of the

R iR

interference fringes is measured. When p = p, = 1.224 /8,, the visibility = 0.

p. = 1.22A1/6,. Measuring p. for a given A permits us to determine the anguiar
diameter 0, = 2a/d.

As an example, taking the angular diameter of the sun to be 0.5°, 8, = 8.7 X 1073
radians, and assuming that the intensity is uniform, we obtain p_ = 140A. For A =
0.5 um, p, = 70 um. To observe interference fringes in a Young’s double-slit appara-
tus, the holes would have to be separated by a distance smaller than 70 pm. Stars of
smaller angular diameter have correspondingly larger areas of coherence. For example,
the first star whose angular diameter was measured using this technique (a-Orion) has
an angular diameter 6, = 22.6 X 1078, so that for A = 0.57 um, p. = 3.1 m. A Young’s
interferometer can be modified to accommodate such large slit separations by using
movable mirrors, as shown in Fig. 10.3-9.

10.4 PARTIAL POLARIZATION

As we have seen in Chap. 6, the scalar theory of light is often inadequate and a vector
theory including the polarization of light is necessary. This section provides a brief
discussion of the statistical theory of random light, including the effects of polarization.
The theory of partial polarization is based on characterizing the components of the
optical field vector by correlations and cross-correlations similar to those defined
earlier in this chapter.

To simplify the presentation, we shall not be concerned with spatial effects. We
therefore limit ourselves to light described by a transverse electromagnetic (TEM)
plane wave traveling in the z direction. The electric-field vector has two components in
the x and y directions with complex wavefunctions U(¢) and U,(¢) that are generally
random. Each function is characterized by its autocorrelation function (the temporal
coherence function),

G (7)) =UX(OU(t + 7)) (10.4-1)

ny(’) o {6}, (Z)By(t I ’)> (IB.|-2)

An additional descriptor of the wave is the cross-correlation function of U/(¢) and
U,(1)
y b

G, (1) =UrOU(t + 7). (10.4-3)
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The normalized function

ny( T)
[Gee(0)G,,(0)]

g.,(7) = e (10.4-4)

is the cross-correlation coefficient of U*(¢) and Uyt + 7). It satisfies the inequality
0 <lg, () < 1. When the two components are uncorrelated at all times, |g, (7)| = 0;
and when they are completely correlated at all times, |g, (7)| = 1.

The spectral properties are, in general, tied to the polarization properties, so that
the autocorrelation and cross-correlation functions have different dependences on 7.
However, for quasimonochromatic light all dependences on 7 in (10.4-1) to (10.4-4) are
approximately of the form exp(j2mv,r), so that the polarization properties are de-
scribed by the values at 7 = 0. The three numbers G,,(0), ny(O), and G, (0), hereafter
denoted G,,. G,,, and G, , are then used to describe the polarization of the wave.
Note that G,, = I, and G,, = I, are real numbers that represent the intensities of the
x and y components, but G, is complex and G, = G, as can easily be verified from
the definition.

Coherency Matrix
It is convenient to write the four variables G
2 X 2 Hermitian matrix

G

xx?

vys Gyys @and G, in the form of a

G G

XX Xy

G G

yx yy

G = (10.4-5)

called the coherency matrix. The diagonal elements are the intensities /, and /,, and
the off-diagonal elements are the cross-correlations. The trace of the matrix TrG =
I, + 1, = I is the total intensity.

*
UY

The coherency matrix may also be written in terms of the Jones vector, J = [U‘

defined in terms of the complex wavefunctions and complex amplitudes (instead of in
terms of the complex envelopes as in Sec. 6.1),

(J*J7 = <[g;}[u Uy]> -

where " denotes the transpose of a matrix, and U, and U, denote U/(t) and U/1),
respectively.

The Jones vector is transformed by polarization devices, such as polarizers and
retarders, in accordance with the rule J’ = TJ [see (6.1-10)], where T is the Jones
matrix representing the device [see (6.1-11) to (6.1-18)]. The coherency matrix is
therefore transformed in accordance with G’ = (T*J*(T])") = (T*J*J'T") =
T*{J*J")TT, so that

(UFUY  (UFU,)

= 10.4-
wpuy wpuy|TE (1049

G’ = T*GT". (10.4-7)

We thus have a formalism for determining the effect of polarization devices on the
coherency matrix of partially polarized light.

To understand the significance of the coherency matrix, we examine next two
limiting cases.
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Figure 10.4-1 Fluctuations of the electric field vector for (4) unpolarized light; (&) partially
polarized light; (¢) polarized light with circular polarization,

Unpoiarized Light

Light of intensity / is said to be unpolarized if its two components have the same
intensity and are uncorrelated, I, = I, = ;I and G,, = 0. The coherency matrix is
then

G-

(1} (1)] (10.4-8)

By use of (10.4-7) and (6.1-15), it can be shown that (10.4-8) is invariant to rotation of
the coordinate system, so that the two components always have equal intensities and
are uncorrelated. Unpolarized light therefore has an electric field vector that is
statistically isotropic; it is equally likely to have any direction in the x—y plane, as
illustrated in Fig. 10.4-1(a).

When passed through a polarizer, unpolarized light becomes linearly polarized, but
it remains random with an average intensity %I. A wave retarder has no effect on
unpolarized light since it only introduces a phase shift between two components that
have a totally random phase to begin with. Similarly, unpolarized light transmitted
through a polarization rotator remains unpolarized. These effects may be shown
formally by use of (10.4-7) and (10.4-8) together with (6.1-11), (6.1-12), and (6.1-13).

Polarized Light

If the cross-correlation coefficient g,, = G,,/[1,1,]'/* has unit magnitude, lg, | = 1,
the two components of the optical field are perfectly correlated and the light is said to
be completely polarized (or simply polarized). Since g,, = G,,/[1.1,]'? the co-
herency matrix takes the form

[ I (1. i )1/28,.-‘,',1
G = l"/z . o : (10.4-9)
(1) 1,
where ¢ is the argument of g,,. Defining U, = 1;}/? and U, = 1}/2%¢/%,
G | Ut U"*Uy] J*J* (10.4-10)
UrU, U, ! |

where J is a Jones matrix with components U, and U,. Thus G has the same form as
the coherency matrix of a coherent wave.
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Using the Jones vectors listed in Table 6.1-1 on page 198, we can determine the
coherency matrices for different states of polarization. Two examples are:

Linearly polarized - _ 1—[1 O] Right-circularly G L 1
in the x direction 0 0 polarized 2

It is instructive to examine the distinction between unpolarized light and circularly
polarized light. [n both cases the intensities of the x and y components are equal
(I, = 1,). For circularly polarized light the two components are completely correlated,
but for unpolarized light they are uncorrelated. Circularly polarized light may be
transformed into linearly polarized light by the use of a wave retarder, but unpolarized
light remains unpolarized upon passage through such a device.

Degree of Polarization

Partial polarization is a general state of random polarization that lies between the two
ideal limits of unpolarized and polarized light. One measure of the degree of polariza-
tion is defined in terms of the determinant and the trace of the coherency matrix:

ddetG |
o=l - — (10.4-11)
(TrG)
12
11, )
- {1-4 iy (1-1g,0)} - (10.4-12)
x ¥y

This measure is meaningful because of the following considerations:

® [t satisfies the inequality 0 < & < 1.

® For polarized light, & has its highest value of 1, as can easily be seen by
substituting |g,,| = 1 into (10.4-12). For unpolarized light it has its lowest value
#=0,since I, =1, and g, = 0.

= [t is (nvariant to rotation of the coordinate system (since the determinant and the
trace of a matrix are invariants to unitary transformations).

® [t can be shown (Exercise 10.4-1) that a partially polarized wave can always be
regarded as a mixture of two uncorrelated waves: a completely polarized wave
and an unpolarized wave, with the ratio of the intensity of the polarized

component to the total intensity equal to the degree of polarization &.

(R0 1 Rl (A= 11N el Begite ialliall

___________________________________________________________________ |
EXERCISE 10.4-1

Partially Polarized Light. Show that the superposition of unpolarized light of intensity
(I, + I, X1 — &), and linearly polarized light with intensity (I, + /), where & is given by
(10.4-12), yields light whose x and y components have intensities /, and /, and normal-
ized cross-correlation |g, |
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PROBLEMS

Lorentzian Spectrum. A light-emitting diode (LED) emits light of Lorentzian
spectrum with a linewidth Ay (FWHM) = 10! Hz centered about a frequency
corresponding to a wavelength A, = 0.7 pum. Determine the linewidth AA, (in
units of nm), the coherence time 7., and the coherence length /.. What is the
maximum time delay within which the magnitude of the complex degree of
temporal coherence |g(7)| is greater than 0.5?

Proof of the Wiener-Khinchin Theorem. Use the definitions in (10.1-4), (10.1-11),
and (10.1-12) to prove that the spectral density S(») is the Fourier transform of
the autocorrelation function G(7). Prove that the intensity I is the integral of the
power spectral density S(v).

Mutual Intensity. The mutual intensity of an optical wave at points on the x axis
is given by

[ |
G(xp,xp) = IUCXP[“—.IVT_J exp| - ———5— |,

where I, W, and p_ are constants, Sketch the intensity distribution as a function
of x. Derive an expression for the normalized mutual intensity g(x,, x,) and
sketch it as a function of x; — x,. What is the physical meaning of the parameters
Iy, Wy, and p?

Mutual Coherence Function. An optical wave has a mutual coherence function at
points on the x axis,

wrt ] (x, ""xz)z
G(xy, x5,7) = exp| — = | exp[ j2wu(x;, x,)7 ] exp| - ———|,
27 p;

where u(x;, x,) =5 x 10™s ! for x, + x, > 0,and 6 X 10 s™ ' for x, + x, < 0,
p, =1 mm, and 7, = 1 us. Determine the intensity, the power spectral density,
the coherence length, and the coherence distance in the transverse plane. Which
of these quantities is position dependent? If this wave is recorded on color film,
what would the recorded image look like?

Coherence Length. Show that light of narrow spectral width has a coherence
length /, = A2 /A A, where AA is the linewidth in wavelength units. Show that for
light of broad uniform spectrum extending between the wavelengths A, ;, and
Amax = 2A o, the coherence length /. = A

max min?” max*

Effect of Spectral Width on Spatial Coherence. A point source at the origin
(0,0,0) of a Cartesian coordinate system emits light with a Lorentzian spectrum
and coherence time 7. = 10 ps. Determine an expression for the normalized
l intensi he ligh ints (0,0, d) and (x,0, d), where d = 10 cm.
Sketch the magnitude of the normalized mutual intensity as a function of x.

Gaussian Mutual Intensity. An optical wave in free space has a mutual coherence
function G(r,r,,7) =J(r; — ry)exp(;j27vry7). (a) Show that the function J(r)
must satisfy the Helmholtz equation V2J + k2J = 0, where k, = 27v,/c. (b) An
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approximate solution of the Helmholtz equation is the Gaussian-beam solution

Jho(x% + y?)

22(2) exp( —jk,z),

1
J(r) = H exp

where ¢(z) =z +jz, and z, is a constant. This solution has been studied
extensively in Chap. 3 in connection with Gaussian beams. Determine an expres-
sion for the coherence area near the z axis and show that it increases with |z}, so
that the wave gains coherence with propagation away from the origin.

Effect of Spectral Width on Fringe Visibility. Light from a sodium lamp of
Lorentzian spectral linewidth Ay = 5 x 10" Hz is used in a Michelson interfer-
ometer. Determine the maximum path-length difference for which the visibility of
the interferogram 7 > .

Number of Observable Fringes in Young’s Interferometer. Determine the number
of observable fringes in Young’s interferometer if each of the sources in Table
10.1-2 on page 352 is used. Assume fuii spatiai coherence in aii cases.

Spectrum of a Superposition of Two Waves. An optical wave is a superposition of
two waves U(1) and U,{r) with identical spectra S,(v)} = S,(v), which are Gauss-
ian with spectral width Av and central frequency v,. The waves are not necessar-
ily uncorrelated. Determine an expression for the power spectral density S(v) of
the superposition U(:} = Uy(1) + Uxt). Explore the possibility that S(v) is also
Gaussian, with a shifted central frequency v| # ry. If this were possible, our faith
in using the Doppler shift as a method to determine the velocity of stars would be
shaken, since frequency shifts could originate from something other than the
Doppler effect.

Partially Coherent Gaussian Beam. A quasi-monochromatic light wave of wave-
length A travels in free space in the z direction. Its intensity in the z = ( plane¢ is a
Gaussian function 7(x) = I,exp(—2x?/Wy) and its normalized mutual intensity
is also a Gaussian function g(x,,x,) = exp[—(x, — x,)*/p2]. Show that the
intensity at a distance z satisfying conditions of the Fraunhofer approximation is
also a Gaussian function I,(x) o exp[—2x2/W2(z)] and derive an expression for
the beam radius W(z) as a function of z and the parameters W,, p., and A.
Discuss the effect of spatial coherence on beam divergence.

Fourier-Transform Lens. Quasi-monochromatic spatially incoherent light of uni-
form intensity illuminates a transparency of intensity transmittance f(x, y) and the
emerging light is transmitted between the front and back focal planes of a lens.
Determine an expression for the intensity of the observed light. Compare your
results with the case of coherent light in which the lens performs the Fourier
transform (see Sec. 4.2).

Light from a Two-Point Incoherent Source. A spatially incoherent quasi-mono-
chromatic source of light emits only at two points separated by a distance 2a.
Determine an expression for the normalized mutual intensity at a distance d from
the source (use the Fraunhofer approximation).

*103-4

Coherence of Lighi Transmitted Through a Fourier-Transformn Optical System.
Light from a quasi-monochromatic spatially incoherent source with uniform inten-
sity is transmitted through a thin slit of width 24 and travels between the front and
back focal planes of a lens. Determine an expression for the normalized mutual
intensity in the back focal plane.
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10.4-1 Partially Polarized Light. The intensities of the two components of a partially
polarized wave are J, = I, = %, and the argument of the cross-correlation coeffi-
cient g, is 7/2.
(a) Plot the degree of polarization & versus the magnitude of the cross-correlation
coefficient |g, |
(b) Determine the coherency matrix if # = 0, 0.5, and 1, and describe the nature of
the light in each case.
(c) If the light is transmitted through a polarizer with its axis in the x direction,
what is the intensity of the light transmitted?




