PHY 208 — Atoms and Lasers
Lecture 3: Is Laser Light Really Special?

Introduction

In this course, so far, we have looked into how a laser device produces a stream of photons, that we also
refer to as a laser beam. We have taken it as a given that this is a useful and interesting process, but this
lecture will actually address the question: is laser light really special? Is it unique? Can we only obtain
light with the properties of that emitted by a laser by having a laser device? Or could we obtain a
reasonable facsimile any other way?

To do so, we need to examine in more details some properties of laser light, and then see if these
properties can be achieved in another fashion.

These lecture notes rely heavily throughout on the two following textbooks:
[S&T] Saleh & Teich, Fundamentals of Photonics, Chapter 10, Statistical Optics

[Brooker] Brooker, Modern Classical Optics, Chapter 11, Optical Practicalities: Etendue, interferometry,
fringe localization

l. Coherence

Temporal Coherence

When discussing light, one of the most important properties differentiating laser light from that emitted
by a thermal source is coherence. Coherence can be conceived as the predictable similarity of some
property at a given point in time or space to another point in time or space. In our case, we could say,”if
| perfectly know the amplitude of the electric field at some point, then how perfectly do | know it at every
other point in time and space”?

So far, we have treated the idealized laser beam as a well-defined, single frequency (monochromatic)
complex wavefunction, as described by equation 1.

Ur,t) = U(r)elet (1)

With this nomenclature?, borrowed throughout this lecture from [S&T], the intensity of the beam is
easily calculated.

Ir) =u@)I? (2)

1 NB: | am using the notation of S&T, where U is the complex wavefunction. It can be replaced by E for a
propagating TEM wave, but then we need a factor of 27 to get optical intensity.
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Figure 1. Time dependence and wavefront map for
an ideal, coherent, monochromatic light source [S&T].
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Figure 2. Time dependence and wavefront map for
a partially coherent light source [S&T].

Taking and plotting the real part of eqn. 1 at a given
point in space, as shown in Figure 1 (top), we
obtain a sinusoid, typical of a propagating wave. If
we consider the spatial distribution of the
wavefronts coming from a point source (Fig 1
bottom), we see that they are perfectly spaced by
the wavelength of the light. Knowing the value of
the wavefunction at a particular spot in time and
space, | know it perfectly at all other spots.

This idealized situation does not exist in reality,
even for laser light. In reality, the exact
instantaneous value of the wavefunction, U, will
fluctuate in both amplitude and phase (around
some central value), and has to be described
statistically.

If we take a cartoon wavefunction where these
fluctuations are great enough to significantly
change the shape of the wavefunction (but where
traces of the central frequency can still be visually
observed), we could get a graph such as Figure 2

(top).

Tracing the wavefronts coming from a point source
(Figure 2 bottom), we see that they are not
perfectly and regularly spaced, but they do roughly
maintain an average spacing.

We can say that the wavefunction representing this
light is partially coherent. Intuitively, we can see
the traces of the base frequency that reminds us of
a sinusoid, but it is clearly not a sinusoid. These are
helpful cartoon images, but we will need a more
mathematical way to describe the difference with
the ideal case.

Mathematical Description of Partially Coherent Light

As we consider such partially coherent light, we need to establish some further ground rules to describe
and limit the type of wavefunctions that we will consider. To begin, we are going to consider random
light, but light that is statistically stationary. This means that the statistical descriptors of the wave



function (like mean, skewness, etc) do not change over sufficiently long time scales. Another way of
describing this condition is to say that for some quantities, we will consider an ensemble average to be
the defining quantity. That is to say, if we could repeat a given experiment numerous times, and the
measured value would take on a constant value, then we will consider that value representative of the
wavefunction.

Doing so for an arbitrarily varying wavefunction U (t), the average intensity of the light becomes:

1) = (|U(®)I?) (3)

Where the (—) indicates an ensemble average over many realizations of the random function under the
same conditions. The requirement that such ensemble averages are constant in time puts a good limit on
the type of wavefunctions that we are considering. For example, figure 3 shows two wavefunctions, both
varying rapidly. Upon ensemble averaging, the stationary wavefunction (a) gives a constant value of
intensity, while the nonstationary one (b) gives a pulse in intensity. This is a small constraint to put on the
wavefunctions we consider, but a useful one.?
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Figure 3. Demonstration of calculation of optical intensity for (a) stationary and (b) nonstationary
wavefunction [S&T].

Now that we have narrowed the family of wavefunctions we are looking at, we must now look at this
family in more detail. Although we have said that the “random fluctuations” will average out for quantities
like intensity, these random fluctuations are very important. We therefore need a way to quantify the
“randomness” of the light for a wavefunction U(t).

For this we will use the temporal coherence function, or autocorrelation function, which we define as
follows.

G(r) =(U*(t + DU(D)) (4)

One can clearly see that this function compares a wavefunction to itself, but shifted by a given amount of
time, 7. This function can be normalized (using the intensity) to get g(t), which will vary between 0 and
1. We easily get g(t = 0) = 1. If the wavefunction looks nothing like its prior self after a given time, T,
then g(t) will drop to zero.

2 Note again that these are not quantum wavefunctions we are considering. These are functions describing the
amplitude of the electric field of the propagating light beam, within a corrective constant.



We can now take a few examples of partially coherent waves and consider their autocorrelation function,
g (7). The figure below shows two such examples. For Figure 4(a), one can still recognize the underlying
fundamental frequency of the wavefunction. One can also see that random fluctuations in amplitude and
phase are occurring. Translated into an autocorrelation function, we would obtain a peaked function
with a characteristic width, 7. | can now compare this to a slightly different wavefunction, also showing
a central frequency, but with a much slower variation in amplitude and phase, Figure 4(b). Displaying the
autocorrelation function for this wavefunction, we should expect a great coherence time, as the
fluctuations are smaller. The autocorrelation function for (b) confirms this.
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Figure 4. Wavefunction examples and concurrent autocorrelation functions [S&T].

To quantify the information in these graphs, we define the time scale over which g(7) falls to 0.5 as the
coherence time, 7.

The coherence time is a difficult value to picture intuitively. An easier way to visualize it is though the
propagation of light with such a coherence time. In vacuum, in a coherence time 7., an electromagnetic
wave will travel a distance ct, (c is the speed of light). The distance it travels is called the coherence
length, I.. A good way to picture the coherence length is as the maximum path length difference (after
splitting a beam) allowed after which one could still observe interference effects. More accurately, for
path differences much less than /., perfect interference fringes will form. The two beams are coherent,
and the electric fields will add, and so can cause constructive or destructive interference. For path
differences much greater than /. the two beams are incoherent, so only the intensities will add up. No
fringes will form.

Spectral Width and Wiener-Khinchin Theorem

Another descriptor of light that we are used to seeing is the optical power spectral density S(v), given in
[W/Hz] , where the total average power, P = ffooo S(v)dv. This quantity may also be expressed as

optical intensity spectral density, in [W/Hz m?], giving the intensity of the beam when integrated, and
may also be expressed in terms of wavelength rather than frequency.

This quantity is often plotted to graphically show the spectral density of an optical source. For example,
shown in Figure 5 is the power spectral density of a green light emitting diode, sold by Thorlabs. Notice
that in this case, the information is presented in terms of wavelength (as this quantity is typically more
familiar to people). To transform from one quantity to the other, we must use the relationship:

A%Av (5)
c

AL =



Furthermore, if the data being plotted was not normalized, the units would be [W/ ], asitisan
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intensity spectral density being plotted.
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Figure 5. Power spectral density for a green LED,
(www.thorlabs.com).

The Wiener-Khinchin theorem states that the temporal coherence function (or autocorrelation
function) G(t) and the power spectral density S(v), form a Fourier transform pair:

S() = foo G (1) exp(—j2mvT) dt (6)

This means that the spectral width (linewidth) of a source and its coherence time are inversely related.
The exact relation will depend on the definition of linewidth that is used.

0 2
(fy7 syav) . . o 1 .
~—=————, then we obtain the simple relationship Av, = —. Again, we
Jo S*Wav Tc

note that this relationship holds when the spectral density is given as a function of frequency.

If we use the definition Av, =

[S&T] provides a table, reproduced below; with typical linewidths (given in terms of frequency),
coherence times, and coherence lengths for a few light sources with which we are familiar.

Table 1. Spectral widths of a number of light sources together with their coherence
times and coherence lengths in free space [S&T].

Source Av, (Hz) Te=1/Av, .= c7,
Filtered sunlight (A, = 0.4-0.8 pum) 3.74 x 10" 2.67 fs 800 nm
Light-emitting diode (A, = 1 pum, AX, = 50 nm) 1.5 x 1013 67 fs 20 pm
Low-pressure sodium lamp 5 x 10M 2  ps 600 pm
Multimode He—Ne laser (A, = 633 nm) 1.5 x 107 0.67 ns 20 cm

Single-mode He—Ne laser (), = 633 nm) 1% 109 1 us 300 m




Notice in Table 1 that even a single mode laser (which we have treated so far as a perfectly
monochromatic source) has a finite bandwidth. Luckily, from the previous lectures and with the Wiener
Khinchin theorem, we now have the tools to understand why.

Laser Linewidth and Spontaneous Emission

To understand the origin of the finite spectral width of a laser beam, we will now use a wavetrain model
to look at the beam resulting from a set of atoms. We consider an ensemble of two level atoms and will
specifically look at the excited state population. Spontaneously, one of the atoms can decay and release
radiation at a frequency, wy .

This radiation can then cause the stimulated emission of the surrounding atoms and result in a coherent
wave.

uy cos(wy + @) (7)

We will also assume that the gain is fully saturated, so the amplitude of the wave stays constant.

With each new spontaneous emission event, the phase of the radiation will change randomly. The total
radiation emitted by the ensemble of atoms will therefore take the form:

u() =U(@) +U"(6) (8)
U(t) = eri(on(P(f)) (9)

Where @(t)is a random variable that translates spontaneous emission into random jumps in phase.
Probability Law for Spontaneous Emission
Let’s first derive the probability p(t) that the phase has not jumped within a time t.

As spontaneous de-excitation is a random, memoryless process, we can define ydt as the probability
that the phase jumps between time t and t+dt. It can be shown (but we won’t do it here) thaty =T'/2,
where I is the excited state lifetime. The probability p(t) must therefore satisfy

p(t+dt) =p(t) x (1 —ydt) (10)

And if we assign p(0) = 1, we obtain b(t)

p(t) = et (1)

. . . . \ Very likely atom is

If we plot this function, as in figure 6, it makes sense \_ still excited
intuitively. Initially, before any time has elapsed, the \
phase has definitely not jumped. However, as time Very likely atom
progresses, it is more and more likely that the phase """""---———-_____hajd.‘?ﬂ-_}'f@ﬂ_-
has jumped.

Figure 6. Probability vs time of an excited atom
being in its excited state.



We can now use this probability to weight the autocorrelation functions for each of the two scenarios.
Autocorrelation function for Spontaneous Emission
Let us now calculate the autocorrelation function G (7) of the emitted radiation.
(Rather than use U and U" to get a real value, we will leave it as imaginary until the end).
We can distinguish between two contributions to the autocorrelation function:
G(r) = (U @)Ut + 1)) + (U ()U*(t + 1))
with phase jump without phase jump
If the phase doesn’t jump during the time |7] :

(U*(U*(t + 1)) = U2 e'@o” (12)

This case has a probability p(]z|) of occurring.
If the phase does jump during the time |7] :

(U @)U (t + 1)) = Uge'@oT (e~ 0 ®) (13)
=0

Because the random variable ¢ (t) means the wave is no longer coherent with itself at the later time, 7.
This case has a probability 1 — p(|z|) of occurring.

The full autocorrelation function G (t) can now be calculated, using the probability of each event.
G(r) = (U U (t + 1))

=p(Izl) x UFe'o" + (1 —p(lz]) x 0

e ¥l x yieiwot
= Uge(iwo)r—ylrl
And now we can use the Wiener-Khinchin theory to transform this into a spectrum

S(w) = J-OO G (1) exp(—iwt) dt (14)

Iy (15)
(w —wp)? + y?

S(w) =

This expression provides an important source of insight. Barring all other potential sources of
broadening (and there are others), the randomization of phase caused by spontaneous emission is the
fundamental, unavoidable source of broadening for lasers.
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The Wiener-Khinchin theory tells us that saying a laser is temporally coherent and saying that it has a
narrow bandwidth are two ways of saying the same thing. In this sense, the nature of laser light being
coherent (more precisely, coherent with itself over long time scales) is equivalent to it simply having a
much narrower spectral width than other light sources. We could therefore take a sufficiently intense,
thermal light source and use a great number of optical filters to decrease the bandwidth, and therefore
increase the coherence length of the beam. We would be throwing away a huge amount of optical power,
but could recuperate at least the approximate optical spectral width of a laser beam.

In-class Example: In the lecture, we will take the example of a halogen headlight lamp, and see if optically
filtering it down, we can achieve the same optical power as a small laboratory laser (HeNe).

However, the coherence/linewidth of a laser beam is only one of two properties that make laser beams
useful. The second property is the ability to focus all that optical energy into a very small area, making
possible the ablation of material or tissue, the reading or writing of tiny features, etc. In the next section,
we will examine the physics surrounding the limits of focusing or concentrating light to see if it is this
feature that makes laser light unique.

Il. Focusing Light

The second useful and special property of a beam of laser light is the ability to focus it down to a very
small spot, and concentrate a huge amount of optical power into a very small area. We will now look at
the physics that limits our ability to cram photons into a very small area. To do so, we need to remind
ourselves of a few descriptors of optical systems that help us define the limits of focusing light.

Acceptance Angle and Numerical Aperture

The first descriptor we will use is Numerical Aperture. The NA, or acceptance angle, of a lens or optical
fibre describes the cone of light (in 2D) that can be collimated by that optical component.

NA =nsinf, (16)

Where n is the refractive index of the medium in which light is propagating, and 6, is the acceptance
angle, as defined in Figure 7. The NA accounts for both the focal length and size of lens, and note that it
is dimensionless, always less than n.



Figure 7. Depiction of acceptance angle for an optical lens

In this case, NA is described using the ray optics model, which can treat light as coming from a point source
(and therefore assumes one can focus light to a point). Although the quantity NA will be useful to us later
on, here it seems to be telling us that we could focus light down to an arbitrarily small area, making it
seem like infinite concentration is possible. However, we know that the ray optics model fails at small
sizes, and that we need to take the electromagnetic nature of the travelling wave into account. So let us
now look at NA using the more accurate model of a Gaussian beam profile.

NA for Gaussian Beams

For propagating Gaussian modes (such as a single mode laser beam), the entire beam profile is fully
defined by only the beam waist and the wavelength. That is to say, if we know those two quantities, we
can describe the width of the beam at all other points in space (until it encounters some optical
components). For such a Gaussian beam, the beam diameter, w, is defined as a function of z by

w(z) = wy [1+ (;)2 )

R

Where zz is the Rayleigh length, and is given by

_wg (18)

Knowing this, and looking at Figure 8, we can define the numerical aperture for a focused Gaussian
Ao

beam, in analogy with the ray optics definition, as NA = p—
0
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Figure 8. Beam width vs position for a propagating Gaussian beam.

This can tell us the spot size for a lens (or mirror) of a given NA. This seems to put a limit on concentration,
at least, for a coherent Gaussian beam. Whereas the ray optics model led us to believe infinite
concentration would occur for a collimated beam and any lens, this Gaussian beam model directly links
the concentration to the parameters of the lens focusing the beam.

However, it does imply that if with a sufficiently large lens/mirror with a very short focal length, we could
achieve an arbitrarily small spot size for our filtered, monochromatic beam3. We have not yet determined
a limit to focusing, so we have not yet found the factor that makes laser light special. To determine the
fundamental limit to focusing, we need to introduce one more property, which is the optical étendue.

Optical Etendue

The optical étendue of a system is most easily pictured by imagining the collection of optical radiance of
an object (or surface) with finite physical dimensions, which | will call the emitter, by another surface,
which | will dub the collector. This is depicted in Figure 9, with the radiating surface in yellow, and the
collecting surface in blue.

3 This is not strictly true — the equations used here to describe a laser beam are only true in the paraxial
approximation where numerical apertures are small. For very short focal lengths, a fuller EM description is
necessary. Nevertheless, this is a useful path to follow for now.



Let’s link power incident on this
surface (or through this solid
angle) to radiance from our
object?

Figure 9. Model for étendue derivation: Two surfaces, an emitter in yellow and a collector in blue.

The system has two important quantities to keep in mind — the angle between the normal of the radiating
surface and the collecting object (8), and the solid angle that the collecting surface represents (6Q2), as
seen from the radiating surface. These are denoted in Figure 10, taken from [Brooker].
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Figure 10. Model for étendue derivation
including mathematical quantities
[Brooker]

The infinitesimal area element &S radiates optical power with
w
strm?2
here is that all points on the emitter surface S can be
considered to have the same values of 8 and 6() for the same

surface on the collector surface.)

|II

some radiance, B [ ] . (The importance of “infinitesima

The power §P that we can collect in some solid angle 6} is
proportional to 6Q and to &S cos@ (the area of the radiating
object projected along the line of sight). The power §P
collected is now given by:

8P = B xn? 8S 6Q cos 6 (19)

We define a quantity étendue (in a medium with refractive
index n), as

5(étendue) = n?8S 6Q cos b (20)

So far, | have described the system with an “emitter” and a “receiver”, but notice that we could treat
either surface as the emitter and get the same étendue, so it is describing the system, not really the

propagation of light in one direction.

Let us take the simpler case when the normal of the surface (with a total area of AS) and the central axis
of the “collection cone” are collinear. If we gather light radiated symmetrically into a cone of semi-angle

Omax » then we have:

étendue = n?AS f cos 8 dQ = AS m(nsin 6,4, )?

(21)



Here we can recognize the numerical aperture (NA) from classical optics, NA = nsin 8,,,,, and so
étendue can also be defined (in this limited case) as

étendue = AS m(NA)? (22)

If we make small-angle approximations as well, we get a useful, even simpler version:

étendue ~ n?ASAQ (23)

This simplest version reminds us why other nomenclature for étendue includes “the AQ product”.

Etendue and focusing light

All this brings us to a very important fact: étendue is
conserved in a lossless optical system. This is true for all
perfect optical components (mirrors, lenses, changes in
refractive index,...).

A simple embodiment of this can be seen in Figure 11, where
a “cone” of light passes from a medium of refractive index n;
to another of refractive index n,. As the étendue is conserved
(but the surface is the same), the change in refractive index
entails a change in the solid angle of the cone.

As it is conserved and it contains information about the
physical size of the beam, étendue is therefore a very
important quantity when discussing the limits of focusing
light.

Figure 11. Demonstration of
conservation of étendue for change in n

Essentially, my thermal source (which could be a filament, the sun, a flame) will have a physical size and
emits light into the solid angle that | collect. That gives it a finite optical étendue that | cannot decrease.
More accurately, | can decrease it, but only by adding losses; in other words, by throwing away optical
power. | cannot arbitrarily focus the light down, as | will always be constrained by the optical étendue.

In-class example: In the lecture we will take the halogen headlight lamp example from before, calculate
its optical étendue, and calculate to what size we could theoretically focus that light (after optical
filtering, of course)

Optical étendue and Gaussian beams

So far, we have only needed to refer to ray optics to appreciate the limits that étendue puts on focusing.
But what significance does optical étendue have for Gaussian beams? We can now use the previously
obtained results to get this answer.



For the “on-axis” case, we previously linked the étendue to the numerical aperture

étendue = AS TNA? (24)

We also had the relationship between NA and the beam waist for a propagating single mode Gaussian
beam

Ao (25)
W,

NA =

If we express this rather as the minimum area at the beam waist, A

o M2 (26)

NA?
TA,

We get an expression for étendue for a propagating Gaussian beam

AS
étendue = (—) A2 (27)
Ao

Equation 27 tells us that for a given propagating monochromatic beam, étendue informs us how many
times larger it is than the minimum spot size, relative to the ideal case of a single mode. But why would
it be larger than the minimum?

The answer lies in the fact that so far, we have only been considering the simplest, Gaussian mode. This
is just one solution for a propagating EM wave. Many other solutions exist, and they form a full basis set
with which we can build up any monochromatic light beam. A part of the full basis set of Hermite-Gaussian
modes is presented in Figure 12, and it important to note that photons may also occupy these modes,
not just the first transverse mode (TEMq), which is the one we are discussing when we describe a Gaussian
beam.

The more modes that are occupied, the larger the smallest possible spot size. The first order Gaussian
mode has the smallest possible spot size.

Expressed in practice as the dimensionless Beam Parameter Product (BPP), which describes the actual
spot size vs minimum theoretical size (ie for TEMg alone).
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Figure 12. Intensity distribution patterns of Hermite-Gaussian solutions (modes) for a propagating EM
wave [S&T].

For the Hermite-Gaussian beam profiles, the optical étendue is another way of expressing the
occupation by photons of transverse propagating modes. It can be shown that (and it feels obvious):

étendue
— (28)

# occupied transverse modes = < 2
0

And so...

The minimum achievable spot size (focus area) will scale with the number of occupied transverse
modes, thus also with étendue.

Is Laser Light Special? Focussing Edition

We now come to the key concept that we needed to understand étendue for a laser beam: it is describing
the occupation of the various optical modes. We cannot « corral » photons into a mode, this would
decrease entropy. Random scattering will distribute them, increasing entropy. The best we can do is filter
them out, such as by focusing a multimode laser beam onto a pinhole to remove all but the lowest order
mode.



lll.  Final Discussion and Take-Away Messages

So finally, is laser light actually unique? No, but it is special...

Unlike electrons (which are Fermions), photons (which are Bosons) can happily all occupy the same state
(in this case, a transverse mode). Lasers are special because the « stimulated » process can selectively
put many, many photons into the same transverse mode (TEMgo) with the same phase, so they can then
be perfectly focused.

Although with enough filtering (first optical to leave only a narrow bandwidth, then spatial to remove all
higher order modes), we could mimic a laser beam, the losses would be spectacular and we would be
left with a tiny amount of optical power.

Take-away messages:

Laser light is almost perfectly coherent:
*  Stimulated emission processes leads to photons with same frequency and phase
e Coherence time, length, and spectral width are all linked
* Spontaneous emission is an unavoidable source of incoherence

Laser light can be perfectly focused:

*  Minimum spot size depends on étendue, which represents the number of occupied transverse
modes, and the wavelength

* Stimulated emission selectively puts photons into one transverse mode (or a few at most)



