## Around the world

In 1995, the TransAtlantic Telephone (TAT) 12/13 network was deployed to connect the U.S. (Geen Hills & Shirley), the U.K. (Lands End) and France (Penmarc'h).



The segment TAT-13 connecting France to the U.S. is a 6321 km long optical fiber bundle. The signal is a  $\sim 1 \,\mu W$  laser with wavelength  $1.55 \,\mu m$ , injected in the silica fiber. To compensate for propagation-induced losses (see above), TAT 12/13 was the first trans-Atlantic system to make use of *Erbium-doped fiber amplifiers (EDFA)* as optical repeaters.



An optical repeater is a device which amplifies the input signal through stimulated emission. EDFAs are short fibers (10 m long, 2  $\mu m$  radius) where Erbium atoms have been introduced (with a density  $\sim 5 \times 10^{23} \,\mathrm{m}^{-3}$ ) and are pumped by a *pump laser* at 980 nm of 50 mW. Erbium atoms can be considered as a three-levels system with the following properties :

| Quantity        | Value                         |
|-----------------|-------------------------------|
| τ <sub>21</sub> | 11 ms                         |
| $\lambda_{21}$  | 1550 nm                       |
| $\sigma_{21}$   | $4	imes 10^{-25}m^2$          |
| $	au_{32}$      | $\sim \mu s$                  |
| $\lambda_{13}$  | 980 nm                        |
| $\sigma_{13}$   | $6	imes 10^{-25}\mathrm{m}^2$ |

**Question** How many repeaters are needed to ensure the signal transmission over TAT-13? For simplicity, you can assume that the pump power remains almost constant through the EDFA.