
Chapter 1

Basic models for light, matter and
light-matter interactions

This first chapter will introduce (and essentially remind you of) models to describe light, matter
and light-matter interactions. But before overviewing these models, it might be worth taking few
lines to explain what a model is, and what to expect from it.

A model is a way to set a problem in order to find an answer to a specific question. Why is the
sky blue ? How is the blackbody radiation distributed ? Why do comets have tails ? To answer
these questions, we need to turn these situations into seizable descriptions, to give ourselves basic
assumptions ruling these descriptions and to see if these assumptions allow us to reach a behavior
ressembling our empirical observations.

If you want to calculate the time it takes for an apple to fall, you are used to describing the apple
as a mass point with (x,y,z) coordinates ; to assuming that there is a basic force called “gravity”
which you can evaluate from the mass and size of the Earth ; and to considering that there is a
relation between motion and forces given by Newton’s second law. This model allows you to
relate the fall time to the height in a single elegant expression t =

√
2H/g. What you have really

done here is to create a virtual universe with a moving dot, and claimed that this could be used to
account for reality. And it works ! But keep in mind few words of warning about models:

• All models are wrong. The aim of a model is not to give you The Truth, it is to bring a clear
answer to a specific question.

• As a rule, a model should be as complicated as needed, but as simple as possible. There is no
point in making full relativistic calculations if you want to estimate the fall time of an apple
with an accuracy of few miliseconds.

• Advances in science allows to push old models to their limits, where new models are re-
quired. It doens’t make the old models “wrong” all the sudden, it simply highlights their
validity range. In this course, we will often be using outdated models because they can give
simple pictures with very good precision as long as they are operated within their validity
range.

Warning: easy confusions

• Matter polarization (local density of electric dipole) and light polarization (local direc-
tion of the electric field)
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Figure 1.1: Usual framework in physics.

• Electric dipole (p = −er) and momentum (p = mv)

• There might be typos in this text from missing different writings for the electrical charge:
e is usually the fundamental charge (1.6 10−19 C) ; but it can (mistakenly) be the charge
of the electron (−1.6 10−19 C) and it sometimes include the Coulomb prefactor e2

4πε0
→

e2.

1.1 Light models

The question “what is light ?” - and the corresponding modelling question “how to account for
light ?” - is now well settled, but has been a recurring problem and a raging debate for centuries.

https://photonterrace.net/en/photon/history/

In this course, we will essentially play with classical light as described by Maxwell’s theory
and with a “semi-quantum” description of photons.

1.1.1 Classical model: electromagnetic wave (reminder from PHY 202)

This is just a reminder, as you have already studied all this extensively.

Maxwell’s equations
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In a classical picture, light is described by two vector fields {E(r, t), B(r, t)} obeying the
celebrated Maxwell’s equations:

∇.E = ρ
ε0

∇.B = 0
∇× E = −∂tB ∇× B = µ0 (j + ε0∂tE)

(1.1.1)

Plane-wave decomposition

Since Maxwell’s equations are linear, it is often useful to decompose each field into a sum of
monochromatic plane-waves1 (which corresponds to a time and space Fourier transform):

E(r, t) =
∫

dω
∫

dk E(k, ω) ei(k.r−ωt) (1.1.2)

The spectrum of the field is distribution of
the single frequency components E(ω) con-
stituting the total field E. In this planewave
basis, the relation between electric and mag-
netic field is straightforward, and leads to
the well-known shape of an electromagnetic
wave :

B =
k× E

c
(1.1.3)

Dispersion relation

The relation between the wave-vector k and the frequency ω is called dispersion relation
and depends on the medium in which the wave is travelling. In vaccum, this relation is
very easy:

ω = kc (1.1.4)

In general, this relation can be complicated and can depend, for instance, on the field
intensity, on the field polarization, or on the location inside the medium (see section
1.3.1)

Energy and intensity

In this model, the directionnal energy flux is given by the Poynting vector

Π =
E(t)× B(t)

µ0
, [Π] = W/m2 (1.1.5)

and light intensity is given by the mean value of the Poynting vector: I = 〈Π〉. Energy
conservation is embedded in Maxwell’s equations and can be written as

∂tu + divΠ = −j.E (1.1.6)

where u(r, t) = 1
2 ε0E2 + 1

2µ0
B2 is the volumic density of energy.

1Note however that fields can also be decomposed on other basis, which might be more relevant in specific situation
(such as in a waveguide).
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Figure 1.2: The whole spectrum !

For monochromatic planewaves, we get

I =
< (E∗B)

µ0
=

1
2µ0c

|E |2 (1.1.7)

When do we need classical light ?

• Electromagnetic spectrum

• Interferences

Describing light as a wave highlights its ability to show interference and diffraction
features. Besides Young’s double slit experiment, the most celebrated signature of this
wave nature is certainly the Arago’s spot (“tache de Poisson” in French). In 1817, the
French Academy of Science decided to award its Mathematics prize to the experimental
and theoretical study of diffraction. At this time, the particle or wave nature of light was
still fiercly debated ; and Augustin Fresnel, who was then barely 30, submitted a report
proposing a wave model of light. Siméon Poisson, one the reviewer who was very
much in favour of a particle description, showed that Fresnel’s model implied that,
in the middle of the shadow casted by an object blocking a light beam, there should
be a bright spot. Poisson thought this was non-sense, and that this incorrect prediction
prooved the whole theory wrong. However, François Arago, the head of the committee,
suggested to perform the experiment and found that, indeed, a bright spot could be
found as predicted by the model. Fresnel did win the prize (it seems there were only
two candidates that year anyways !).
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1.1.2 Quantum model: field operators

This model is out of the scope of this lecture, and will be treated in future quantum optics classes. You don’t
need to read this paragraph, it’s just for your own culture.

In quantum mechanics, a system is described by an appropriate Hilbert space, and its state is
given by a wavefunction - ie a vector of this Hilbert space following the Schrodinger equation. To
get a quantum description of light, we would need to define a Hamiltonian for light - following
the usual procedure, we could start with the classical expression of energy, and turn quantities
into operatores:

U =
∫

d3r u(r, t)⇒ ĤR =
∫

d3r
(

1
2

ε0Ê2(r, t) +
1

2µ0
B̂2(r, t)

)
(1.1.8)

but now we need to define what kind of object a “wavefunction for the field” is, and how the
“electric field operator Ê2 actually acts on this wavefunction. The full quantum treatement is the
correct way to introduce the notion of photon, which appear as a quantization of the field.

When do we need quantum light?

• Spontaenous emission

Surprising as it might seem, a quantum model for light is required to describe sponta-
neous emission in a fully rigorous way! We’ll discuss this point in future chapters.

• Photon statistics

Shoot light towards a separating blade, and put two time resolved detectors to monitor
when a signal is collected on each of the two arms. Are the two detectors going to
“click” simultaneously, non-simultaneously or just randomly ?

Well actually, this is a very tricky question because it really depends on the nature of the
light which is being sent. Thermal emission will give a bunched behavior, a single pho-
ton source will of course give an anti-bunched signal and laser light will have a random
profile. A quantum framework is necessary to fully account for these observations, and
it is out of the scope of this lecture.

• Quantum computing

1.1.3 Intermediate model: “Photons”

A somehow intermediate description of light is given by a particle-like picture, where we consider
a flow of massless marbles defined by the following relations:

p = h̄k E = h̄ω = h̄kc (1.1.9)
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We will call these particles “photons”, but bear in mind that the only proper way to introduce
photons is the quantum model mentionned above. In this image, light’s spectrum corresponds to
the constituting photons’ distributions (ie how many photons with a given energy can be found
in this light ?).

A word of warning about this model : this model gives a simplistic vision of light, which
can be very convenient (it’s quite easy to picture a bunch of light particles flying in space) and
surprisingly powerful, but remember that it is limited and can be misleading. In particular, unlike
the previous two models, this picture does not include any notion of phase or coherence in light.
Willis Lamb, one of the best spectroscopist ever and Nobel prize in 1955 had quite harsh words
about this description of “photons”.

“It should be apparent from the title of this article that the author does not like
the use of the word "photon", which dates from 1926. In his view, there is no

such thing as a photon. Only a comedy of errors and historical accidents led to
its popularity among physicists and optical scientists.

I suggested that a license be required for use of the word photon, and offered to
give such license to properly qualified people.

My records show that nobody working [here] in Rochester, and very few other
people else where, ever took out a license to use the word "photon". “

W. E. Lamb, Anti-photon, Appl. Phys. B 60, 77-84 (1995).

When do we need intermediate light?

This model gives a very simple way to account for light-matter interactions with rate equa-
tions - we will just have to count how many “photons” are interacting with atoms. It will be
used extensively in this course.

1.2 Atomic models

There again, the question “what is matter?” - and the corresponding modelling question “how to
account for matter?” - is as old as mankind and remained a bone of contention until the begining
of the XXth century.
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https://www.thinglink.com/scene/569421147997732866

1.2.1 Classical model: Lorentz oscillator (reminder from PHY 104)

In classical physics, atoms are composed negatively charged marbles (electrons) orbiting around
positively charged marbles (protons) under the influence of Coulomb interaction. The state of
the system is given by the trajectories (position and velocity) of the marbles, following Newton’s
second princple. Several approximations are usually made to simplify calculations:

• A phenomenological damping force is often introduced:

f = −mΓ
d
dt

re (1.2.1)

• Born-Oppenhiemer approximation: the nucleus is much heavier than electrons, and is as-
sumed to remain still. We can restrict the problem to the study of the electron motion

me
d2

dt2 re = −mΓ
d
dt

re −
Ze2

4πε0

1
r2

e
ur (1.2.2)

It is often useful to introduce the orbital momentum L = r × p, which is conserved since
the force at stake derives from a central potential. The radial equation of motion can then be
expressed as

r̈ = −Γṙ +
L2

mer3 −
Ze2

4πmeε0

1
r2 (1.2.3)

• Elastically bound electrons: consider a stable orbit r(0)e satisfying the previous equation. We
consider a small perturbation of this stable orbit, such that re = r(0)e + δre (but the angular
momentum is conserved). If we perform a Taylor expansion of eq.(1.2.3) to the first order in
δre, we find:

me
d2

dt2 δr = −meω2
0δr−meΓ

d
dt

δr (1.2.4)

with meω2
0 = 1

L3

(
Ze2

4πε0

)8

(but what matters most here is not the actual value of ω0, which
will most of the time be determined phenomenologically, but the spring-like form which
leads to the notion of resonant frequency).

When do we need classical atoms?

• Optical index (see section 1.3.1 for more details).

We recall that χ is related to the optical index n by the relation,

n2 = 1 + χ (1.2.5)
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Figure 1.3: The elastically-bound electron model.

1.2.2 Quantum model : Schrödinger model

In basic quantum mechanics, a system is described by a Hamiltonian and the current state of
the system is given by a wavefunction following the Schrodinger equation. Here, the relevant
Hamiltonian should account for the kinetic and potential energies of the electron :

H0 =
p̂2

2me
− 1

4πε0

e2

r̂
(1.2.6)

A key result of quantum mechanics is that, in a confining potential, the eigen states of the Hamil-
tonian have discrete energy values (unlike classical physics where all energies can be considered).
We will demonstrate in Lecture 6 that energy eigenstates

∣∣ψn,l,m
〉

can here be labelled with an inte-
ger numbers (primary quantum number n ≥ 1, secondary quantum number 0 < l < n, azimuthal
quantum number −l ≤ m ≤ +l), that the nth state is n2 times degenerate and that the energy
values follow the famous scaling law

En = − 1
n2

mee4

32π2ε2
0 h̄2︸ ︷︷ ︸

Ry

(1.2.7)

The state of the system can then be described as a linear combination of these eigenstates |ψ〉 =
∑

n,l,m
cn,l,m

∣∣ψn,l,m
〉
, and the average number of electron in a given state

∣∣ψn,l,m
〉

is |cn,l,m|2. Remember
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that electron obey the Pauli principle, and two electrons can’t share the same state.

When do we need quantum atoms?

• Advanced spectroscopy - if you really want to calculate from scratch where atomic
resonance lie, or how they are modified by the presence of an external perturbation,
you will need to dive into a proper quantum model.

• Chemistry

1.2.3 Intermediate model : Bohr model

The Bohr model is somehow between both worlds. It is a classical model in the sense that, just like
in the Lorentz model, atoms are described as a marble-like electron orbiting around the nucleus
according to Newton’s law. However, we add on pinch of quantum results : we consider that
among all possible orbits, the only allowed trajectories are such that

L = nh̄ (1.2.8)

where n is integer number. This constraint can be interpreted as follows: if we take the electron as
a quantum system for a second, we can attribute it a de Broglie’s wavelength λ = h/p, where p
is the momentum of the electron. Orbits should correspond to stationnary waves, meaning that a
integer number of wavelength should fit along the orbit. For a circular orbit, this condition reads
2πr = nλ, hence the above stated result.

Taking this constraint into account, it is easy to show that the energy of circular orbits take a
form similar to that predicted by the full quantum picture:

En = −Ry
n2 (1.2.9)

When do we need intermediate atoms?

Basic spectroscopy: the Bohr model was introduced to give a physical rational to the Rydberg
law for the hydrogen spectrum, which calculates the spectral lines as

h̄ω = Ry
(

1
n2 −

1
m2

)
(1.2.10)

1.3 Model for light-matter interactions

Now that we have models for light and models for atoms, we will see how these models connect
together, and how to account for interactions between light and atoms in the different descriptions.

1.3.1 Interactions between atoms and a classical field

For all atomic models, the main ideas are always the same :

• The electric field of the light polarises the atom - ie shifts the electron average position re-
sulting in the creation of an electric dipole.

• The atomic polarisation creates a local current and density of charge which changes the dis-
persion relation for electromagnetic waves, and thus the propagation of light.
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Light→Atom

For classical and “intermediate” atoms:

The electron will interact with electric and magnetic fields through the Lorentz force :

F = −e (E + v× B) (1.3.1)

Neglecting the magnetic part, we reach the usual expression for the equation of motion:

me
d2

dt2 δr = −meω2
0δr−meΓ

d
dt

δr− eE (1.3.2)

Considering a monochromatic light, we introduce complex notations E = Re(E e−iωt)

and we will be looking at oscillating solutions to the equation of motion ie δr(t) =

Re(δr0e−iωt). The previous equation becomes a forced oscillator:

δr0 = − 1

1−
(

ω
ω0

)2
− i Γ

ω0

(
ω
ω0

) e
meω2

0
E (1.3.3)

and we see that the amplitude of electron oscillations will be very strong if the light
frequency is close to the eigenfrequency of the system ω ' ω0.

We will often have to consider not a single atom, but an actual medium composed of
many similar atoms. It will then be useful to define the density of polarization P, which
correponds to the density of electric dipole induced by a monochromatic field:

P = −neδr0 ≡ ε0χE (1.3.4)

where n is the density of atoms and χ is the susceptibility. Using the equation of motion
derived above, it is straightforward to evaluate the susceptibility for the Lorentz model:

χLorentz =
ne2

mε0ω2
0

1

1−
(

ω
ω0

)2
− i Γ

ω0
ω
ω0

(1.3.5)

For quantum atoms (see chapter 6 for more details)

In a quantum model, the influence of the light on the atom appears as an addition-
nal term in the Hamiltonian corresponding to the potential energy of the dipole Ep =

− e r︸︷︷︸
dipole

.E, leading to

H =
p̂2

2me
− 1

4πε0

e2

r̂
− er̂.E (1.3.6)

Note that the electric field E = E0 cos ωt is a classical quantity here (not hat), while the
electron position and momentum are quantum quantities.

To calculate the susceptibility, keeping the same definition as above, we need to estimate
the density of polarization by computing the average value of the dipole:

P = −ne 〈ψ| r̂ |ψ〉 ≡ ε0χE (1.3.7)

Atoms→Light (Reminder from PHY202)
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The local density of polarisation P results in a local density of charge ρp = −divP and a
current density jp = ∂tP, which have to be included as sources in Maxwell equations. In
isotropic (ie χ doesn’t depend on the light polarization), linear (ie χ doesn’t depend on the
light intensity) and homogenous (ie χ is the same everywhere in space) media, these terms
simply lead to a small change in the dispersion relation, which becomes:

ω =
kc
n

(1.3.8)

where n ≡
√

1 + χ is the optical index.

1.3.2 Interactions between atoms and a “intermediate” field

See next section.

1.3.3 Map for light-matter interactions

Table (1.1) summarizes the different models introduced before, and the framework to account for
interaction between light and matter in each case.

1.4 Focus on the semi-quantum description

In this section, we consider a semi-quantum description to account for the blackbody radiation
- which will allow us to introduce three basic light-matter interaction processes that we will be
using the for rest of this course.

Let us go back to 1900, when the description of thermal radiation was a fierce issue2. It has
been observed that all materials, regardless of their nature, tend to emit a similar radiation which
depends only on their temperature. Two phenomenological rules were established by Rayleigh
and Jeans and Wien to account for the spectral distribution of this radiation at low and high tem-
peratures respectively

uE(hν) ∼
hν→∞

1
π2h̄3c3

(hν)3 exp
(
− E

kBT

)
& uE(hν) ∼

hν→0

kBT
π2h̄3c3

(hν)2 (1.4.1)

In 1901, Planck comes with a “deperate move” and proposes the ad-hoc expression which connects
the dots between these two models

uE(hν) =
1

π2h̄3c3

(hν)3

ehν/kBT − 1
(1.4.2)

but the numerical description doesn’t rely on a clear physical explanation of the processes at stake.
In 1917, Einstein offers an elegant microscopic explanation of this model.

2The approach proposed in this section does not faithfully follow the historical path. It is a re-interpretation for pedagog-
ical purposes. For instance, we will consider rates based on photon densities because it is easier to picture in comparision
to chemical processes. This picture made no sense at the time. Einstein equations were written using energy densities
instead.
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1.4.1 Absorption, spontaneous and stimulated emission

The main idea is the following one: this thermal radiation results from the equilibrium between
matter on the one hand, and radiation on the other hand.

From matter side, consider atoms decscribed as two levels (Bohr like) systems. At thermal
equilibrium, the population ratio is given by

Ne

Ng
= exp

(
−

Ee − Eg

kBT

)
(1.4.3)

From the radiation perspective, consider an ensemble of photons going in all directions with
all possible energies. At the end of the day, we should find that the distribution of these photons
nγ(hν) is compatible with eq. (1.4.2) - i.e.

uγ(hν) = E× nγ(hν) (1.4.4)

Now the missing point is the interactions between matter and light. Somehow, we expect that
electrons can go from the ground state Eg to the excited state Ee by absorbing a photon with the
corresponding energy hν = Ee − Eg, or from Ee to Eg by emitting a similar photon. But more
precisely, theses processes should be such that, at equilibrium, both matter and radiation are fol-
lowing their own equilibrium distributions.

First try Let’s try and write down the transition rates corresponding to the two basic processes
we already mentioned.

• How many absorption processes take place every second ? We expect this number to
be proportionnal to the spectral density of photons which can be absorbed nγ and to
the number of atoms able to actually absorb these photons (ie atoms in the ground
Ng). Absorbtion will remove one atom from the ground state, and add one atom to the
excited state. Noting Bge the proportionnality factor, we get

d
dt

Ng

∣∣∣∣
abs

= −BgeNgnγ &
d
dt

Ne

∣∣∣∣
abs

= +BgeNgnγ (1.4.5)

• How many spontaneous emission processes take place every second ? Assuming that
atoms in the excited state have a fixed probability Γ to go back down to the ground
state every second3, we get :

d
dt

Ne

∣∣∣∣
spt

= −ΓNe &
d
dt

Ng

∣∣∣∣
spt

= +ΓNe (1.4.6)

In stationnary state, the rate going to any state should be the same as the rate leaving from that
state (detailled balance condition, see appendix), leading to:

BgeNgnγ = ΓNe ⇒ nγ =
Γ/Bge

exp
(

h̄ω
kBT

) (1.4.7)

and we see that this form cannot be made to match eq. (1.4.2). It means that somehow,
something is missing from our simple model.

3Γ is often noted A when deriving Einstein coefficient, to remain coherent with the B notation for absorption processes.
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Second try This something is what Einstein introduced as the stimulated emission : in addition to
the spontaneous decay from excited to ground state, which can emit a photon in any direc-
tion, atoms can also be pushed back down by an existing photon. In this case, the photon
emitted through the process is an exact copy of the photon which triggered the emission.

• How many stimulated emission processes take place every second ? This process is ac-
tually the inverse of absorption : it take one photon (so we expect the rate to be pro-
portionnal to the spectral density of photons) and one atom in the excited state (so we
expect the rate to be proportionnal to the number of atoms in the excited state) to pro-
duce one atom in the ground state:

d
dt

Ne

∣∣∣∣
stim

= −BegNenγ &
d
dt

N1

∣∣∣∣
stim

= +BegNenγ (1.4.8)

In steady state, a detailled balance now gives

nγ =
Γ

Bge exp
(

hν
kBT

)
− Beg

(1.4.9)

Comparing this results with Planck’s law gives two very important results :

Beg = Bge (1.4.10)

which means that stimulated emission has exactely the same coupling as absorption, and

Γ
Beg

=
(hν)2

π2h̄3c3
(1.4.11)

which means that a system isn’t able absorb radiation without being also able to emit this
same radiation.

1.4.2 Light-matter cross section

In the precious section, we have identified three basic processes for light matter interactions. It is
also interesting to interpret these terms from the radiation perspective: how are these interactions
affecting a light beam passing through atoms ?

Consider an ensemble of atoms, not necessarily in thermal equlibirum - so unlike the previous
case, Ne and Ng are not fixed. Instead of the thermal radiation from before, we now consider a
beam of photons passing through the atoms.

We will add one techinical difficulty when making this calculation. So far, we have been count-
ing photons, considering all photons had exactly the same energy hν. When considering real light,
of course, the spectrum is never infinitely narrow. So we will make this calculation with spectral
quantities instead. The spectral intensity of the beam is I(hν) - ie the power carried by photons
with energy between hν and hν + d(hν) is I(hν) d(hν). In the same was, we will consider the
spectral density of photons N (hν) such that the number of photons with energy between hν and
hν + d(hν) is N (hν) d(hν).
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From spectral intensity to spectral photon density

Let’s first relate the light intensity to the corresponding photon density. To do so, we perform
an energy balance over a period dt on the ensemble of the beam’s photons with energy
hν up to d(hν) which are going to pass through a control surface dS during this period.
The number of considered photons is N (hν) d(hν) dS cdt, the corresponding energy which
will pass through dS during dt is hν ×N (hν) d(hν) dS cdt - and this is by definition of the
intensity equal to I(hν) d(hν) dSdt, leading to

N (hν) =
1
c
I(hν)

hν
(1.4.12)

From energy balance to the Beer-Lambert law

We now perform an energy balance on the light beam passing through an infinitesimal slab
of atoms of surface dS and thickness dx between t and t + dt, considering only photons with
energy between hν and hν + d(hν)

• Energy entering the slab: I(hν, x) d (hν) dSdt

• Energy leaving the slab: I(hν, x + dx) d (hν) dSdt

• Energy absorbed from the beam by the atoms: hν× Bgeng dSdx×N (hν) d(hν)× dt

• Energy added to the beam by the atoms: hν× BegneSdx ×N (hν) d(hν)× dt (we only
take stimulated emission into account ; spontaneous emission can go in all direction
and doesn’t contribute to the beam)

This balance leads to
1
c

dI
dt

+
dI
dx

=
Beg

c
(
ne − ng

)
I (1.4.13)

and in steady state

d
dx
I = σeg

(
ne − ng

)
I (1.4.14)

where we introduced the interaction cross section σeg =
Beg

c which tells the size of the target
each atoms represents from the beam perspective. An atom in the ground state is a target
which will remove energy from the beam by absorbing a photon if “hitted” ; an atom in
the excited state will add energy to the beam by stimulated emission. We recover here the
celebrated Beer Lambert law which accounts for light propagation through a medium and
we now interpret it as two contributions : the strength of the coupling (which is the same for
absorption and stimulated emission as discussed before) and available populations in the
ground and excited states.

Interaction cross-sections

Very importantly, we can re-write the interactions rates for an atom in a light beam using the
cross section rather than the Beg coefficient, which is the formalism we will use in most of
this lecture. The probability per second for an atom in the ground state to absorb a photon
from the beam, which is the same as the probability per second for an atom in the excited
state to emit a photon in a stimulated way, can be written as
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rabs = rstim =
∫

d (hν) BegN (hν) (1.4.15)

=
σeg I
hν

(1.4.16)

(where we assumed that the B coefficient is the same for all wavelengths with significant
spectral intensity, an assumption we will relax in future lectures).

1.5 Take-home messages

The key elements you need to remember from this first chapter are the following ones :

1. You should be able to redraw the model map (classical, quantum and intermediate descrip-
tion of light, matter and their interaction) by yourself

2. Remember the 3 basic processes in the semi-quantum model (absorption, spontaenous emis-
sion, stimulated emission) and how they are connected to each other (eq. (1.4.10) and eq.
(1.4.11)).

3. Keep in mind the Beer Lamber law eq. (1.4.14) and the interaction cross sections eq.(1.4.15)
as it’s going to be recurring tools from now on.

1.6 Appendix

1.6.1 Basic accounting

1.6.1.1 How to make a balance ?

State the balance clearly Start by writing explicitely the balance under consideration

What? We are considering a balance of particles / energy / electric charge / momentum
/ potatoes /...

When? bewteen time t and t + dt / between the begining and the end of the interaction
/ ...

Where? in the volume betwee x and x + dx, y and y + dy, z and z + dz / in the slab of
section S and thickness dz / ...

To prevent confusion, take the time to write down all ingredients of the balance (examples
are given for a 1D problem)

Detail all ingredients 1. Amount inside the system at time t. Usually something like, n(x, t)Sdx.

2. Amount entering the system t et t + dt. Usually something like, dφx = jx(x, t)Sdt. Voir
plus bas.

3. Amount leaving the systemt et t + dt. Idem. Usually something like, dφx+dx = jx(x +

dx, t)Sdt. Idem

4. Amount created inside the systemt et t+ dt. Usually something like, dG = G(x, t)Sdxdt

5. Amount destroyed inside the systemt et t+ dt. Usually something like, dR = R(x, t)Sdxdt
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6. Amount inside the system at time t + dt. Usually something like, n(x, t + dt)Sdx.

Use conservation

The balance can then easily be stated as:

What is insde the system at time t + dt = What was inside at time t
n(x, t + dt)Sdx n(x, t)Sdx

+ What got in
jx(x, t)Sdt

− What got out
jx(x + dx, t)Sdt

+ What has been created
G(x, t)Sdxdt

− What has been destroyed
R(x, t)Sdxdt

(1.6.1)

Use Taylor-Young formula

Express quantities in x + dx or t + dt as a function of quantities in x or t using a first order
development:

f (x0 + dx, y0, z0, t0) ' f (x0, y0, z0, t0) +
∂ f
∂x

(x0, y0, z0, t0)dx

.

The balance then becomes(
n(x, t) +

∂n
∂t

(x, t)dt
)

Sdx = n(x, t)Sdx

+ jx(x, t)Sdt

−
(

jx(x, t) +
∂jx
∂x

(x, t)dx
)

Sdt

+ G(x, t)Sdxdt

− R(x, t)Sdxdt

Turn it into a nice differential equation

All that remains is to simplify this expression into an elegant form:

∂n
∂t

+
∂jx
∂x

= G −R

1.6.1.2 Detailled balance

Population in state i
×

∑
j 6=i

Transition rate from i to j

= Nb of jumps from i per second
= ni ∑

j 6=i
ri→j


=



∑
j 6=i

(Population in state j

×
Transition rate from j to i)

= Nb of jumps from j to i per second
= ∑

j 6=i
njrj→i


(1.6.2)
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1.6.2 Note on units

Dealing with spectral densities can be tricky. A spectral density gives the amount of particles
(or energy) in a very small spectral interval - but that interval can be counted in terms of energy,
frequency or wavelength :

• How many photons are there with an energy between E and E + dE? → nE(E)dE

• How many photons are there with a frequency between ω and ω + dω? → nω(ω)dω

• How many photons are there with a wavelength between λ and λ + dλ? → nλ(λ)dλ

Of course these quantities are related, since E = h̄ω = hc/λ ; but be careful ! If we just replace
the expression of E by hc/λ inside nE(E), we won’t get the correct expression for spectral density
in wavelength ! We will still have the spectral density in energy (ie the number photons with an
energy between E and E + dE). If we want to switch to a spectral density in wavelength, we need
to consider the differential element as well:

nE(E)dE = nω(ω)dω = nλ(λ)dλ (1.6.3)

with dE = h̄dω = hc
λ2 dλ, leading to

uE(E, Ω) uω(ω, Ω) uν(ν, Ω) uλ(λ, Ω)

E3

4π3 h̄3c3
1

exp
(

E
kBT

)
−1

(h̄ω)3

4π3 h̄2c3
1

exp
(

h̄ω
kBT

)
−1

(hν)3

2π2 h̄2c3
1

exp
(

hν
kBT

)
−1

2hc
λ5

1
exp

(
hc

λkBT

)
−1

Emax = 2.82 kBT h̄ωmax = 2.82 kBT hνmax = 2.82 kBT λmax = 0.2497 ¯m eV
kBT

1.6.3 Bohr model

Model

Consider an electron submitted to the Coulomb force induced by a nucleus of charge +Ze.

We will restric our study to circular orbits for the sake of simplicity. We will note r the radius
of the orbit.

Bohr assumption on orbital angular momentum : L = r× p = nh̄uz

De Broglie’s interpretation Consider that the electron is described by a wave of wavelength λ. For an
orbit to be allowed, a stationnary wave should fit along the perimeter - ie 2πr = nλ.
Using de Broglie’s relation, λ = h/p, we find easily Bohr’s assumption.

Results Radius quantization : the orbit radius can only take values scaling like :

r = n2 h̄2

m
4πε0

Ze2 (1.6.4)

Derivation Using Newton’s second law

m
d2

dt2 r = −m
v2

r
ur = −

Zq2

4πε0

1
r2 ur ⇔ v2 =

Zq2

4πmε0

1
r

(1.6.5)
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and Bohr assumption induces the condition

mrv = nh̄ (1.6.6)

We deduce the expression of the radius from these two equations.

Energy spectrum : the electron energy can only take values scaling like :

En = − 1
n2

m
2h̄2

(
Ze2

4πε0

)2

(1.6.7)

Derivation

• Kinetic energy

Ec =
1
2

mv2 =
1
2

m
(

nh̄
mr

)2
=

1
2n2

m
h̄2

(
Ze2

4πε0

)2

(1.6.8)

.

• Potential energy

Ep = − Ze2

4πε0

1
r
= − 1

n2
m
h̄2

(
Ze2

4πε0

)2

(1.6.9)
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