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Chapter 1

Introduction to quantum mechanics

1.1 Welcome - thermodynamics

Thermodynamics is the framework of any study dedicated to energy issue. It emerged during the
XIXth century as new scientific concepts were required to support the second industrial revolu-
tion. The improvement of energy converters (the steam engine being a case in point) allowed an
unprecedented increase of the energy available per capita, and hence of the living conditions.

Thermodynamics is thus the compulsory first step of any program concerned with energy. We
will simply summarize well-known results here, as a warm-up for this refresher.

Figure 1.1: Energy per capita in GJ in Europe. Source: A. Kander et al, Power to the People, Princeton
University Press (2013).

5



D. Suchet - PHY530 6

Coal

Oil

Gas

Biomass

Nuclear Hydro

Solar + wind
+ geothermal
+ tidal

Figure 1.2: World’s Total Primary Energy Supply (TPES). Source: International Energy Agency - IEA.

1.1.1 Energy and the first law

“Heat is nothing else than motive power (energy), or rather, a motion which has
changed its form. It is a motion of the molecules of bodies. Whenever motive

power is destroyed, there is, at the same time, a production of heat in quantity
precisely proportional to the quantity of power destroyed. Reciprocally,

wherever there is destruction of heat, there is production of power of motion.
We may then state as a general law, that energy is, in nature, invariable in

amount; that is, is never, properly speaking, either created or destroyed. In fact,
it changes form; that is, it causes sometimes one kind of motion, sometimes

another; but it is never destroyed.”

Sadi Carnot, Notes, circa 1830

The first law of thermodynamics states two main results: 1/ energy is a conserved quantity
and 2/ energy can be exchanged either through work or heat. It is usually written for a closed
system as

∆E = W + Q (1.1.1)

where ∆E is the total change in energy of the system (usually, the total energy E is expressed as
the sum of the mechanical energy of the center of mass of the system Em and of the internal energy
U), W is the work provided to the system by the exterior world and Q is the heat supplied to the
system.

Note that the energy variation ∆E only depends on the initial and final states. The work and
heat provided to the system depend on how the evolution from the initial to the final state is being
performed.

Power

The notion of power is critical in energy issues, as power measures the time evolution of
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energy:

P =
dE
dt

(1.1.2)

During your previous studies, you probably encountered several approaches to power - all
of them will be useful here !

Mechanical power

Consider a force F applied at the point M of a system. In a reference frame where
the velocity of the application point M is v(M), the power applied on the system
by the force is

P = F.v(M) (1.1.3)

Equivalently, for a torque Γ applied on a system with angular velocity θ̇, the
power is defined as

P = Γθ̇ (1.1.4)

Forces result in a work being applied on the system. The infinitesimal work pro-
duced by the force F on the system over a period dt is defined as

δW = P dt = F.dr (1.1.5)

where dr is the small displacement of the application point M during that pe-
riod.

Fluid dynamics

Energy balance performed on a fluid element in a velocity field v gives

P =
1
2

ρv3 (1.1.6)

Electrical power

Consider an electrical system with a voltage U(t) and a current I(t). The power
delivered to that system is

P(t) = U(t) I(t) (1.1.7)

For monochromatic quantities U(t) = U0 cos ωt and I(t) = I0 cos ωt + ϕ, the
average power is

P̄ =
1
T

T∫
0

P(t)dt =
1
2

U0 I0 cos ϕ (1.1.8)

Radiation power

Consider an electromagnetic radiation defined by an electric field E and a mag-
netic field B. The energy per unit of time (ie the power) passing through a surface
dS is given by

P =

(
E× B

µ0

)
.dS (1.1.9)

Units
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eV J kWh toe

eV 1 1.6× 10−19 - -
J 6.3× 1018 1 2.7× 10−7 2.3× 10−11

kWh - 3.6× 106 1 8.6× 10−5

toe - 42× 109 11 630 1

There is a large mess of units used to count energy, partly because of the large variety of
situations where energy is a relevant concept. Here is a selected best-of energy units.

• The standard system unit is the Joule, defined as

1 J = 1 kg.m2.s−2

• For most microscopic systems, the relevant unit is the electron-volt, defined as the po-
tential energy of an electron under a 1V potential difference

1 eV = 1.6× 10−19 J

• The Calorie (or kcal) is mostly used in the food industry. It is defined as the energy
required to raise the temperature of 1L of water by one degree Celsius at a pressure of
one atmosphere. Not to be confounded with the calorie (lower case):

1 Cal = 1000 cal ' 4.2 kJ

• The British Thermal Unit follows the same idea, but using stupid units: it is defined
as the amount of heat required to raise the temperature of one pound of water by one
degree Fahrenheit at a pressure of one atmosphere

1 BTU = 1.060 kJ

• The Quad is a large packet of BTU. It is notably used by the US Department of Energy
to discuss energy budgets.

1 Quad = 1015 BTU

• The Watt-hour ( /!\ it’s “watt times hour”, not “watt per hour”) is the power accumu-
lated using a 1W source during 1h:

1 Wh = 3.6 kJ

This unit (and its multiples kWh, MWh...) is usually used for electrical energy budget.

• The ton of oil equivalent is the amount of energy released by burning one tonne of crude
oil:

1 toe ' 42 GJ ' 11.63 MWh (1.1.10)

It is the standard unit to discuss energy budgets for the IEA, for instance.
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1.1.2 Entropy and the second law

“[T]he production of heat alone is not sufficient to give birth to the impelling
power: it is necessary that there should also be cold; without it, the heat would

be useless.”

Sadi Carnot, Reflections on the Motive Power of Heat, 1824

The first law makes no difference between all transformations as long as they preserve energy.
The second law tells which transformations are allowed, and which are impossible. The quantity
at stake is the entropy, which accounts for the disorder in the system. The second law states three
main results: 1/ any exchange of heat is equivalent to an exchange of entropy, 2/ entropy cannot
be destroyed and 3/ only during reversible processes is no entropy created. It is usually written
as:

∆S = Sex. + Scr. (1.1.11)

with δSex. = δQ/Text

and δScr. ≥ 0

The second law has numerous consequences, one the most celebrated being the existence of
an upper-bond for the efficiency at which any system can convert heat into work. This limit is
called the Carnot efficiency and corresponds, for an energy converter connected to a heat source at
temperature TH and a heat drain at temperature TC to:

ηC =
Wprovided by the system

Qdelivered to the system
= 1− TC

TH
(1.1.12)

1.1.3 STEEM program

Why do we need quantum and statistical physics ?

• We want to study energy conversion. We take a system in its equilibrium state (to be de-
fined), we apply a stimulation (illumination, heating, electrical bias...) which induces a
response of the system. We need to characterize this response to determine if we can take
benefit from it - that’s the job of physics.

• We are talking about macroscopic systems, made of� 1023 particles. We cannot determine
the exact configuration of the system before the stimulation, nor compute the exact response
of the system to this stimulation. We need a statistical approach, which is the foundation of
thermodynamics.

• Every particle is described as a wavepacket in quantum mechanics. As a hand-waving
argument, the spread of the wavepacket can be estimated by the de Broglie wavelength

λde Broglie =
√

2πh̄2

mkBT , which decreases with the temperature. If the de Broglie wavelength

is much smaller than the average distance between two particles d = n−1/3, then quantum
mechanics can be ignored and particles can be safely described as independant marbles.
Otherwise, quantum description is required.
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m d Tc Quantum ?

Air (N2) 5 10−26 kg ∼ 10−8 m 1 mK Nope
Materials (e−) 10−30 kg 10−10 m 105 K Yes
Nuclear (p+) 10−27 kg 10−15 m 1012 K Yes

Plugging in typical numbers, mechanical systems (wind...) can avoid a quantum analysis,
but any problem dealing with electrons (materials, semi conductors, PV...) or with atomic
nuclei (nuclear...) has to take quantum mechanics into account.

1.2 Quantum Mechanics: postulates

This part is a bit dry, but it gives the basic quantum mechanics toolbox.

1.2.1 Six rules of the quantum world

First postulate Wave function

In any field of physics, the system under scrutiny is accounted for by a mathematical de-
scription. In classical mechanics, the system is described by a position vector r. In electro-
magnetism, the system is described by two vectors (E and B) for each position r.

In quantum mechanics, the system is described by a wave function, usually denoted |ψ〉. A
wave function is a weird thing, and it takes some time to get used to it. Depending on the
problem we consider,|ψ〉 can be an object of different nature.

Most usual examples

• To describe the motion of a particle, we take |ψ〉 as a function ψ(r) ∈ C.

• To describe the spin of particle with spin 1/2, we take |ψ〉 =
(

ψ1

ψ2

)
∈ C2 as two

component vector.

1. |ψ〉 contains all the information about the system (but we don’t know yet how to get
information from |ψ〉, cf 2nd postulate). For instance, in the first example, |ψ(r)|2 gives
the density of probability of finding the particle at position r.

2. The best way to picture |ψ〉 is to think of a vector.

(a) Just like a vector can be projected against another vector, a wave function can be
projected against another wave function. This operation is a scalar product, and
turns 2 wave functions into a complex number

• In our first example, the scalar product is defined as 〈φ |ψ〉 =
∫

d3r φ∗(r)ψ(r).

• In our second example, the scalar product is defined as 〈φ |ψ〉 = φ∗1 ψ1 + φ∗2 ψ2.
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(b) We will see later that any operation performed on the system corresponds to chang-
ing |ψ〉 into another vector.

Note: Formally speaking, |ψ〉 is an element of a Hilbert space, which -for us- simply means
that it comes with a scalar product.

Any quantum system can be described by an element |ψ〉 of a Hilbert space
H.

Second postulate Observable

Any measurable quantity of the system (ie energy, position, momentum, angular momen-
tum, spin...) is associated to an “observable”. An observable Ô is an operator, ie an object
that turns a wave function into another wave function - like a function, but for vectors:

Ô :
H → H
|ψ〉 → Ô |ψ〉

Example:

• For a particle in a 3D space, the position along the x axis is associated to the oper-
ator x̂, which changes |ψ〉 into a new wave function x̂ |ψ〉 such that (x̂ |ψ〉) (r) =
xψ (r) .

• For a particle in a 3D space, the momentum along the x axis is associated to
the operator p̂x, which changes |ψ〉 into a new wave function p̂x |ψ〉 such that
( p̂x |ψ〉) (r) = −ih̄ ∂ψ

∂x (r)

• For a 1/2 spin, the spin operator along the z axis is defined by its action on a spin
|+〉z aligned with the z axis and a spin |−〉z anti-aligned with the z axis:

Ŝz |+〉z = h̄
2 |+〉z Ŝz |−〉z = − h̄

2 |−〉z

Note 1: We will not discuss here how the observable are defined (why is momentum associ-
ated to −ih̄∇, and not to something else ?).

Note 2: This does not tell us how to measure anything yet.

Note 3: Most of the time, the hatˆis omitted.

Note 4: It is often useful to think of operators as a matrix (which turns a vector into another
vector).

Moreover, observables are hermitian operators (ie 〈φ| Ô |ψ〉 =
(
〈ψ| Ô |φ〉

)∗ for all ψ and φ ).
This has a major mathematical consequence called the spectral theorem:

Spectral theorem

For any observable Ô, there is a basis of H (ie an ensemble of elements
{∣∣φO

i
〉}

such
that any element |ψ〉 can be written as a linear combination |ψ〉 = ∑ ci

∣∣φO
i
〉
) such that

1. This basis is orthonormal 〈
φO

i

∣∣∣φO
j

〉
= δi,j

2. Each element of this basis is an eigenvector of Ô

Ô
∣∣∣φO

i

〉
︸ ︷︷ ︸

operator applied on vector

= Oi ×
∣∣∣φO

i

〉
︸ ︷︷ ︸

number times the vector
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3. All eigenvalues {Oi} are real (with no imaginary part).

Note 1: By considering simply the scalar product, we can express ci =
〈
φO

i |ψ〉.
Note 2: Several eigenvector can have the same eigenvalue - in which case the value is
called degenerated.

Note 3: If we consider two operators Ô1 and Ô2, we have to juggle with two different
basis of eigenvectors - one for each operator. Sometimes, it is possible to find a basis
shared by both operators - this is the case if and only if these operators commute - ie
Ô1Ô2 = Ô2Ô1

Any measurable quantity is associated to a hermitian operator called
observable.

Third postulate Measurement

Any single measurement associated to an observable Ô can only give an
eigenvalue Oi of this observable.

If the same experiment is performed several times, the average measured
value is 〈ψ| Ô |ψ〉.

Example:

• The average position along the x axis of a state |ψ〉 is

〈ψ| x̂ |ψ〉 =
∫

x |ψ(x)|2 dx

• The average momentum along the x axis of a state |ψ〉 is

〈ψ| p̂x |ψ〉 = −ih̄
∫

ψ∗(x).
∂ψ

∂x
(x) dx

• The average spin along the z axis of a state |ψ〉 = c+ |+〉z + c− |−〉z is

〈ψ| Ŝz |ψ〉 =
h̄
2
|c+|2 −

h̄
2
|c−|2

Fourth postulate Born Rule

For any single measurement associated to an observable Ô, the probability of
obtaining the result Oi is

∣∣〈φO
i |ψ〉

∣∣2.

Note 1: For a continuous operator (such as position and momentum), we should consider
instead a probability distribution function (ie the probability of obtaining the result O0 up
to dO is |〈φ(Oo) |ψ〉|2 dO.

Note 2: We suppose here that all states are normalized (ie 〈ψ |ψ〉 = 1).

Note 3: We can easily check that this rule is compatible with the previous postulate express-
ing the mean value of Ô as 〈ψ| Ô |ψ〉.

Example:
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• If we measure the spin of a state |ψ〉 =
√

3
2 |+〉z +

1
2 |−〉z along the z axis, we have

75% chance to find + h̄
2 and 25% chance to find − h̄

2 .

Fifth postulate Collapse of the wave packet (“Effondrement du paquet d’onde” in French)

After a measurement resulting in a value Oi, the state is projected to its
components with the corresponding eigenvector.

Example:

• If we measure the spin of a state |ψ〉 =
√

3
2 |+〉z +

1
2 |−〉z along the z axis and find

− h̄
2 , then the system is in the state |ψ〉 = |−〉z from now on.

Note: We will not use that postulate so much.

Sixth postulate Time evolution

The time evolution of a system is given by Schrodinger equation

ih̄
∂

∂t
|ψ〉 = Ĥ |ψ〉

where H is the Hamiltonian of the system, ie observable associated to energy.

Most critical example:

The Hamiltonian is an observable, so there is a basis
{∣∣φH

i
〉}

such that

Ĥ
∣∣∣φH

i

〉
= Ei

∣∣∣φH
i

〉
The time evolution of any of these states is simply given by

ih̄
∂

∂t

∣∣∣φH
i

〉
= Ĥ

∣∣∣φH
i

〉
= Ei

∣∣∣φH
i

〉
and we find that energy eigenstates evolve simply by dephasing with a frequency given
by the energy of the state

∣∣∣φH
i (t)

〉
= exp

(
−i

Ei
h̄

t
) ∣∣∣φH

i (0)
〉

Note: The Hamiltonian usually resembles to the classical energy, but keep in mind it is an
operator. In many cases, the Hamiltonian will include a kinetic term

ˆHkin =
p̂2

2m
= − h̄2

2
∆

1.2.2 Practical applications

There are 3 typical ways to use the basic ingredients introduced above
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Determine which states are accessible to the system

Starting from a physical situation, the first step is to determine which states are permitted
to the system. The existence of allowed and forbidden states is not specific to quantum
mechanics (vibrating string for instance).

As underlined above, energy eigenstates play a critical role in quantum mechanics. A quan-
tum mechanics problem usually starts with the expression of a Hamiltonian, and the first
step is to determine the corresponding eigenstates.

Estimate the time evolution starting from an initial state

In many cases, we want to know how the system evolves starting from known initial condi-
tions |ψ0〉. This is given by Schrodinger equation (postulate 6), which requires to calculate
Ĥ |ψ〉.

We don’t know how to calculate Ĥ |ψ〉 in the general case. But it is easy for eigenstates of H
(example of postulate 6).

Luckily, we know that the eigenstate of H form a basis of the Hilbert space (postulate 2). So
the general way of solving a quantum mechanics problem is:

1. Find the eigenstates of the Hamiltonian
{∣∣φH

i
〉}

2. Express the initial state |ψ0〉 as a sum of these eigenstates |ψ0〉 = ∑ ci
∣∣φH

i
〉

3. Dephase each of these component

4. Get the time behavior of the eigenstate

|ψ0〉 |ψ(t)〉
‖ ‖

∑ ci |φi〉 → ∑ ci exp
(
−i Ei

h̄ t
)
|φi〉

Response to an external stimulation: Perturbation theory

In many cases, the problem is the following. The system is described by a Hamiltonian Ĥ0,
and initially in the quantum state |ψi〉 (let’s assume |ψi〉 is an eigenstate of Ĥ for simplicity).
All the sudden, we apply a perturbation to the system (e.g. we add an illumination, an
electrical bias or whatever). The Hamiltonian becomes Ĥ = Ĥ0 + V̂. What happens to the
initial state ?

If the perturbation V̂ was not there, the system would always remain in the state |ψi〉, and
would simply acquire a dephasing over time. Because of V̂, the system can evolve towards
another state

∣∣∣ψ f

〉
. Another way to say it is simply that |ψi〉 is an eigenstate of Ĥ0, but not

of Ĥ.

Of course, one possibility would be to calculate the eigenstates of H, and apply the method
discussed above. But quite often, it is very hard or impossible to calculate the eigenstates of
H.

Provided that the influence of the stimulation remains limited, the departure rate from |ψi〉
towards

∣∣∣ψ f

〉
is given by the Fermi Golden Rule

Γi→ f =
2π

h̄

∣∣∣〈ψ f

∣∣∣V |ψi〉
∣∣∣2 D(E f )
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where D(E f ) is the final density of state (this will make sens after lecture 4). The FGR can
be derived from Schrodinger equation (not done here).

1.3 Basic applications

1.3.1 Potential well

A quantum well is a potential landscape strongly confining particles in a narrow region of space.
Such potential wells are not only the most standard example of quantum mechanics - they also
successful account for practical situations. From an applied perspective, potential wells are well
suited to describe quantum dots, where brutal changes in the structure of the material result in a
tight confinement (∼ nm) of the electrons. From a more fundamental perspective, potential wells
provide a good model for atomic nuclei, where nucleons (protons and neutrons) are confined in
a ∼ 10−15 m radius by the strong interaction.

1. Let us consider a particle of mass m in a potential well

V(x) =

0 0 ≤ x ≤ L

V0 x < 0 or x > L
(1.3.1)

where the Hamiltonian is given by

Ĥ = − h̄2

2m
∂2

∂x2 + V(x) (1.3.2)

For simplicity, we will restrict the problem to 1D and will assume the well to be infinitely
deep (V0 = +∞), such that

ψ(x) = 0 if x ≤ 0 or x ≥ L (1.3.3)

An eigenfunction φ with eigenvalue E of the Hamiltonian should therefore verify the differ-
ential equation(

h̄2

2m
∂2

∂x2 + E

)
φ(x) =0 (1.3.4)

⇒ φ(x) =A cos

(√
2mE

h̄2 x

)
+ B sin

(√
2mE

h̄2 x

)
(1.3.5)

where A, B ∈ C, and the boundary conditions eq.(1.3.3) leads to

A = 0 &

√
2mE

h̄2 = nπ (1.3.6)

We can therefore label the eigenfunctions according to n, and we find

φn(x) =

√
2
L

sin
(nπ

L
x
)

& En = n2 π2h̄2

2mL2 = n2E0 (1.3.7)
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General rule: In the presence of a trapping potential, the Hamiltonian
eigenstates take discrete energy values, and can be labeled by an integer

number n.

Vwell = 0 inside,∞ outside

Ewell = n2 π2h̄2

2mL2

Vharmonic =
1
2

mω2x2

Eharmonic =

(
n +

1
2

)
h̄ω

Vatom = −Ze2

r
(in 3D)

Eatom = − 1
n2

Z2e4m
2h̄2

Applications

Chemistry and nuclear power The simple model of a potential well shows that the
more tightly confined a system is, the higher the typical energy scale. For
an atom, where electrons (m ∼ 10−30 kg) are confined in a volume of typi-
cal size L ∼ 10−10 m, the typical energy is ∼ 10 eV. For an atomic nucleus,
where nucleon (m ∼ 10−27 kg) are confined in a volume of typical size
L ∼ 10−15 m, the typical energy is ∼ 100 MeV.

Hydrogen spectroscopy With the quantification of states in a Coulomb potential given
above, we can calculate which radiation can be absorbed or emitted by a
Hydrogen atom, by considering that an electromagnetic wave with pulsa-
tion ω can drive a transition between two energy levels only if its energy
h̄ω matches the energy difference between these two levels

h̄ω = Z2e4m
2h̄2

(
1

n2
1
− 1

n2
2

)

2. To gain more intuition about quantum measurements, let’s consider that the particle is in
the state |ψ〉 = 1√

2
|φ2〉 − 1√

3
|φ3〉+ eiπ/4

√
6
|φ5〉.
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(a) We can easily verify that 〈ψ |ψ〉 = 1, since(
1√
2
〈φ2| −

1√
3
〈φ3|+

e−iπ/4
√

6
〈φ5|

)(
1√
2
|φ2〉 −

1√
3
|φ3〉+

eiπ/4
√

6
|φ5〉

)
=

1
2
+

1
3
+

1
6

(1.3.8)
where we used 〈φn |φm〉 = δm,n , because of the spectral theorem.

(b) This state has 0 chance to give E0 (which is not an eigenvalue of H) or 16 E0 (because
there is no contribution of the corresponding eigenvector |φ4〉) ; there are 50% chance
to measure 4 E0 and 16.6% chance to measure 25 E0.

(c) After any single measurement, the system is projected in the eigenspace corresponding
to the measured eigenvalue. The only eigenstate which corresponds to an energy of
9 E0 is |φ3〉. After the measurement, the system is thus in the state |ψ′〉 = |φ3〉. Any
further energy measurement will give the same value 9 E0.

(d) The average value of the energy is given by

〈ψ|H |ψ〉 = 1
2

E2 +
1
3

E3 +
1
6

E5 =
55
6

E0 (1.3.9)

3. If the particle is in the state |φ2〉, then the density of probability of presence of the particle is
given by

|〈x |ψ〉|2 = |φ2(x)|2 =
2
L

sin2
(

2π

L
x
)

(1.3.10)

and the average value is therefore

〈x〉 = 〈ψ| x |ψ〉 =
∫

x |ψ(x)|2 dx =
L
2

(1.3.11)

and does not depend on time, because |φ2〉 is an eigenstate of the Hamiltonian.

4. By contrast, if the system is not prepared in an eigenstate of the Hamiltonian, such as

ψ0(x) =
√

1
L sin

(
πx
L
)
+
√

1
L sin

( 2πx
L
)
, the state will evolve over time as

ψ(x, t) =

√
1
L

sin
(πx

L

)
exp

(
i
E0

h̄
t
)
+

√
1
L

sin
(

2πx
L

)
exp

(
i4

E0

h̄
t
)

(1.3.12)

(a) The density of probability of presence is then

|ψ(x, t)|2 =
1
L

(
sin2

(πx
L

)
+ sin2

(
2πx

L

)
+ 2 sin

(πx
L

)
sin
(

2πx
L

)
cos

(
3

E0

h̄
t
))

(1.3.13)
(picture below for t E0/h̄ = 0, 0.025, 0.05, 0.075 and 0.1) and the average position
changes over time as

〈x(t)〉 =
∫

x |ψ(x, t)|2 dx =
L
2

(
1− 32

9π2 cos
(

3
E0

h̄
t
))

(1.3.14)

The numerical value of the horrible pre-factor has little importance here - what matters
is that the particle is now bouncing back and fourth within the well.
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(b) The average value of the energy is given by

〈H(t)〉 = 〈ψ(t)|H |ψ(t)〉 = 5
2

E0 (1.3.15)

Note that this value does not vary over time, which proves that energy is conserved.

5. In a finite well, the boundaries conditions are not simply ψ(0) = ψ(L) = 0. Instead, we
have to solve the Schrodinger equation in the three relevant regions of space (x < 0, 0 <

x < L, L < x) and consider that ψ(x) −→
x→±∞

0 (otherwise the presence probability cannot be

normalized) and that ψ and ∂xψ should be continuous (not demonstrated here).

Solving these equations in the walls of the well gives an exponential decay (also called
evanescent field), with a typical damping length

√
2m
h̄
√

V0 − E - ie the particle has a non zero
probability to be found outside of the well ! This is the key ingredient for the tunnel effect,
which we will discuss later.

1.3.2 Double well

We now consider a double well structure (see fig. below).

• We first assume that the two wells are isolated (ie the middle barrier is very high) and note
H0 the corresponding Hamiltonian - the expression of which will not be calculate. In each
well, as studied above, the eigenstates of the Hamiltonian have discrete energy values and
we label them {|φn, L〉} in the left well and {|φn, R〉} in the right well respectively. Each
value En of the energy spectrum thus corresponds to two states (namely |φn, L〉 and |φn, R〉)
- ie each energy is twice degenerated.
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• We now take into account the tunnel transition through the separation wall by considering
an additional coupling term V such that

V̂ |φn, L〉 = −J |φn, R〉 (1.3.16)

V̂ |φn, R〉 = −J |φn, L〉 (1.3.17)

1. Remember that any operator transforms a wave function into another wave func-
tion. This can be conveniently written using a matrix formalism. For instance, in the
{|φn, L〉 , |φn, R〉} basis,

H =



E1 0 0 0
0 E1 0 0
0 0 E2 0
0 0 0 E2

. . .


+



0 −J 0 0
−J 0 0 0
0 0 0 −J
0 0 −J 0

. . .


=



E1 −J 0 0
−J E1 0 0
0 0 E2 −J
0 0 −J E2

. . .


Note that we did not calculate the expression of the eigenstates - but we can still use
these states to express how the Hamiltonian operates.

2. The eigenstates {|φn, L〉 , |φn, R〉} of the Hamiltonian H0 without tunneling are not any-
more the eigenstates of the total Hamiltonian H = H0 + V. What we are looking for
are states |ψ〉 such that H |ψ〉 = E |ψ〉. Since the Hamiltonian H is block diagonal, we
can look for such eigenstates within each of these blocks:H |φn, L〉 = En |φn, L〉 − J |φn, R〉

H |φn, R〉 = En |φn,R〉 − J |φn, L〉
⇒

H
(
|φn, L〉+|φn, R〉√

2

)
= (En − 2J)

(
|φn, L〉+|φn, R〉√

2

)
H
(
|φn, L〉−|φn, R〉√

2

)
= En

(
|φn, L〉−|φn, R〉√

2

)
and we identify two eigenstates |ψn,S〉 =

|φn, L〉+|φn, R〉√
2

and |ψn,A〉 =
|φn, L〉−|φn, R〉√

2
with

energies (En − 2J) and En respectively.

General rule: any coupling between states tends to lift degeneracies. The
eigenstates are then de-localized. The resulting energy splitting is larger if

the coupling is stronger.

1.4 Take home message

• Keep in mind the basic postulates of QM.

• In the presence of a trapping potential, the Hamiltonian eigenstates take discrete energy
values, and can be labeled by an integer number n.

• Any coupling between states tends to lift degeneracies. The eigenstates are then delocalized.
The resulting energy splitting is larger if the coupling is stronger.
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Chapter 2

Plane waves and density of states

2.1 Free particles

Particles in free space

Particles in free space are important for 3 reasons

• It accounts for particles not interacting with anything, or inbetween two interactions

• It happens to be a relevant description of electrons in a solid (see lecture 4)

• It is one of the few situation we can address easily

To account for free particles, we can start from the flat trap discussed yesterday and push the
wall towards infinity. As usual, we will start by finding the eigenstates of the Hamiltonian
describing this situation. Generalizing the previous result for a box Lx × Ly × Lz,

φn(x) =

√
8

LxLyLz
sin
(

nxπ

Lx
x
)

sin
(

nyπ

Ly
y
)

sin
(

nzπ

Lz
z
)

(2.1.1)

with n ∈N and the corresponding energy is

En =
h̄2

2m

(
π2

L2
x

n2
x +

π2

L2
y

n2
y +

π2

L2
z

n2
z

)
(2.1.2)

Born-van Karman boundary conditions

As the idea is to take L→ ∞ in the end, the boundary conditions should not matter so much.
So instead of considering ψ = 0 at the walls of the box (the so called “Dirichlet conditions”),
we will consider that the wave function is periodic (the so called “Born - van Karman con-
ditions”):

ψ (x + L) = ψ(x) (2.1.3)

21
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such that the eigenstates are now given by N

φn(x) =

√
1

LxLyLz
exp

(
i
2πnx

Lx
x
)

exp
(

i
2πny

Ly
y
)

exp
(

i
2πnz

Lz
z
)

(2.1.4)

En =
h̄2

2m

(
4π2

L2
x

n2
x +

4π2

L2
y

n2
y +

4π2

L2
z

n2
z

)
(2.1.5)

1. Generally speaking, the relation between the energy E and the momentum k is called
a dispersion relation.

2. Yes, this condition is weird. For a quantum physicist, the Universe is a periodic shoe
box.

3. At the end of the day, all physical results are independent of the size of the box, or on
the boundary conditions. In the following, we will consider Lx = Ly = Lz = L.

4. Note that now, we have n ∈ Z.

One of the main motivation for considering this condition is that the wave vectors {|φn〉} are
“plane waves”, ie the eigenvectors of the momentum operator p = −ih̄∇, with eigenvalue
h̄k:

p̂ |ψk〉 = h̄k |ψk〉 with k =
2π

L

 nx

ny

nz

 (2.1.6)

Note Since p̂ = −ih̄∇, it is easy to show that ψk(r) = L−3/2 exp (i k.r). These functions
are called plane waves because all points in any plane orthogonal to k have the same
phase.

From discrete to continuous

The energy looks very much like that of a massive particle

E =
p2

2m
p = h̄


2π
Lx

nx
2π
Ly

ny
2π
Lz

nz

 (2.1.7)

where the momentum p can only take discrete values, with a step π/Li in each direction.

However, if L is very large (and we want to take it towards infinity), this step is very small
and p seems almost continuous.

We will now just take some time to play a bit with these plane waves and get more familiar with
them

2.2 Tunnel effect

2.2.1 Standard derivation

Note: this textbook exercise is one of the most classical application of basic quantum mechanics.
Let us consider a plane wave of energy E propagating towards a potential barrier of height V0

and length L. We will restrict the analysis to 1D for the sake of simplicity.
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1 2 3

L

1. In a classical picture, imagine rolling a ball from left to right towards a hill. If the ball initially
has enough kinetic energy to pass the top of the hill (ie E > V0), it will keep rolling towards
the right side. Otherwise, it will roll back towards the left side.

2. We will first consider the quantum case where E > V0

(a) Any eigenstate |ψ〉 of the Hamiltonian should verify H |ψ〉 = E |ψ〉 in all three regions
of space, ie: 

− h̄2

2m ∂2
xψ = Eψ in region 1

− h̄2

2m ∂2
xψ + V0ψ = Eψ in region 2

− h̄2

2m ∂2
xψ = Eψ in region 3

(2.2.1)

from which we deduce the form of the wave-function in each region of space

ψ(x) =


Ai exp (ikx) + Ar exp (−ikx) in region 1

AR exp (ik′x) + AL exp (−ik′x) in region 2

At exp (ikx) + Ab exp (−ikx) in region 3

(2.2.2)

with k = 1
h̄

√
2mE and k′ = 1

h̄

√
2m (E−V0). A spatial dependency ∝ exp (ikx) corre-

sponds to a wave moving from left to right. As there is no contribution coming from
the right side of the barrier towards it, we take Ab = 0.

(b) The continuity of ψ and ∂xψ leads to 4 equations:

Ai + Ar = AR + AL

k (Ai − Ar) = k′ (AR − AL)
&

AReik′L + ALe−ik′L = AteikL

k′
(

AReik′L − ALe−ik′L
)

= kAteikL

(2.2.3)

(c) As we have 5 variables, one more relation would be required to determine the exact
value of each amplitude. The normalization of the wave-function could provide such a
relation. However, as we are interested in the reflection and transmission coefficients,
which are expressed as a ratio of these amplitudes, and we don’t need to go through
this painful calculation !
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T =
∣∣∣At

Ai

∣∣∣2
= 4E(E−V0)

4E(E−V0)+V2
0 sin2

(
1
h̄

√
2m(E−V0).L

)
π
k'

2π
k'

0

1

4E (E-V0)

4E (E-V0)+V0
2

L

Remarkably, this coefficient depends on L and is not always equal to 1, even though E > V0

! In the quantum world, even if the ball has enough energy to pass over the barrier, it has
a non-zero probability of bouncing back, except if the thickness of the barrier takes very
specific values (L = nπ/k′). Note that if E � V0, the probability of bouncing becomes
extremely small.

3. We now consider the case where E < V0

(a) Just like before, we solve separately the eigenvalue equation in the three regions of
space. The only difference is that, since E < V0, the wave-vector in the barrier region
is now imaginary, which corresponds to an evanescent wave (and not to a propagating
wave anymore). We therefore find:

ψ(x) =


Ai exp (ikx) + Ar exp (−ikx) in region 1

AR exp (−k′′x) + AL exp (k′′x) in region 2

At exp (ikx) in region 3

(2.2.4)

with k = 1
h̄

√
2mE and k′′ = 1

h̄

√
2m (V0 − E).

(b) Considering that the wave function ψ and its gradient ∂xψ must be continuous at each
interface, write 4 equations relating the amplitude of each term of ψ.

Ai + Ar = AR + AL

ik (Ai − Ar) = k′′ (AR − AL)
&

ARek′′L + ALe−k′′L = AteikL

k′′
(

ARek′′L − ALe−k′′L
)

= i kAteikL

(2.2.5)

(c) From these equations, it can be shown that

T =

∣∣∣∣At

Ai

∣∣∣∣2 =
4E (V0 − E)

4E (V0 − E) + V2
0 sinh2

(
1
h̄

√
2m (V0 − E).L

) (2.2.6)

' 16
E× (V0 − E)

V2
0

exp

(
−
√

8m (V0 − E)
h̄

L

)
(2.2.7)

The classical case would simply give T = 0: if the particle doesn’t have enough energy
to climb up the barrier, it has no chance to pass through and will roll back to where it
came from. The situation is here completely different: the wave has a non-zero proba-
bility to be transmitted, as if it had gone through the barrier - hence the celebrated name
“tunnel effect”.



25 Tunnel effect

The tunnel effect is a quantum phenomena where a system can access states
which would be unreachable because of a too high potential barrier in a

classical picture. It is due to the finite penetration of the wave-function inside
the barrier, where it behaves as an evanescent wave (see section 1.3.5)

Note that the higher the potential, the larger the barrier and the heavier the particle,
the less likely it is to tunnel through the barrier.

2.2.2 Applications

Scanning tunneling microscopy

STM is a electronic microscopy technique which allows a sub-atomic resolution (∼ 0.01 nm depth
resolution, ∼ 0.1 nm lateral resolution) of the surface topography of a sample. A tip is brought
close to the sample (∼ 0.3 nm). Electrons, which were confined in the sample by the work-
function φ of the material, can now tunnel through vacuum to reach the tip. The ensuing elec-
tronic flow constitute an electrical current I proportional to the tunneling probability T estimated
above1.

Tip

Sample

tunnel 
current

sample work function

tip work function
Vacuum

. .

Left: a simple model for STM. Right: This technique has been used by IBM to create “A boy and his
atom”, a stop-motion movie where each pixel is a single atom (IBM, 2013). It has been recognized by the

Guinness Book of World Records as the World’s Smallest Stop-Motion Film.

The exponential behavior of the tunneling probability makes this technique extremely sensi-
tive to small variations in the sample’s surface. With a typical work-function φ ∼ 5 eV, the current
decreases by a factor 10 if the distance from the tip to the sample’s surface changes by δ = 0.1 nm:

I(d + δ)

I(d)
=

exp
(
−
√

8mφ

h̄ (d + δ)

)
exp

(
−
√

8mφ

h̄ d
) = exp

(
−
√

8mφ

h̄
δ

)
∼ 0.1 (2.2.8)

By measuring this tunnel current as the tip is moved across the sample (or alternatively by ad-
justing the tip height to maintain a constant current), it is thus possible to map the surface with
an excellent accuracy.

1In practice, an external voltage V is applied to prevent electrons from the tip from tunneling to the sample, in order
to ensure a non zero electrical current (I ∼ 10 pA).
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Alpha decay

The radioactive α decay corresponds to the emission of an α particle (2 protons and 2 neutrons)
by an atomic nucleus. In a simple model, the α particle experiences two competing potentials:

• Inside the nucleus, the strong interaction appears as a flat negative potential

V(r < RN) = −U0

• Outside of the nucleus, the Coulombian interaction due to the Z protons of the nucleus
repels the α particle

V(r > RN) =
2Ze2

4πε0r

Alpha particles have a typical kinetic energy E . 10 MeV, while the Coulomb barrier for heavy
nucleus (Z & 80) reaches V(RN ∼ 10−15m) & 20 MeV, so the particle cannot escape classically
from the strong interaction: it has to tunnel through the barrier. Considering that the radioactive
lifetime τ of the nucleus is inversely proportional to the tunneling probability, we can recover the
phenomenological law of Geiger and Nuttal2 (1911):

log (τ) = A− B× Z√
E

(2.2.9)

Radioactive lifetime as a function of
the charge number of the nucleus
and of the kinetic energy of the α

particle. Data (Wikipedia) for the
Thorium series (circle), Uranium se-
ries (square), Neptunium series (di-
amond) and Actinium series (trian-
gle). The solid line is the best linear fit
(B = 1.4 MeV−1/2) while the dashed
line is the estimate from the Gamow
model B = 1.8 MeV−1/2.

Thorium series
Uranium series
Neptunium series
Actinium series

235U

239Pu

238U

222Rn

210Po

To do so, we follow the approach of Gamow, who offered the first derivation of this law in
1928. In order to recover the previous situation, we first decompose the Coulomb barrier into
small steps of constant height, and we note Ti the probability of transmission through the ith

barrier

Ti ' exp
(
−2

h̄

√
2m (Vi − E)dx

)

2This law is remarkable because it provides a correct estimate of the lifetime over 20 orders of magnitude !
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Modeling α decay as quantum tun-
neling through the Coulomb barrier.
To perform the calculation, we will
approximate the repulsive Coulomb
potential as a series of barriers simi-
lar to the one studied above.

The probability of passing through the whole barrier can then be expressed as:

Ttot = T1 × T2 × ...× Tn

where the last bit corresponds to the distance RC where the Coulomb barrier decreases below the
kinetic energy of the particle3. Expressing the discrete sum as an integral, we get:

Ttot ∼ exp

−2
h̄

√
2m

RC∫
RN

√
V(r)− Edr


This integration can be performed analytically4 and leads, when considering RC � RN , to the
following result:

Ttot ∼ exp

(
− e2
√

2m
2h̄ε0

Z√
E

)

Assuming that the lifetime τ ∝ T−1
tot , we recover the Geiger and Nuttal law, and we can estimate

the slope to B ∼ 1.8 MeV−1/2. As shown above, this rough estimate is in remarkable agreement
with the experimental data !

2.3 Density of states (DOS)

2.3.1 Problem

What matters most is the energy of a state - quite often, all states with the same energy will behave
in the same way. So we need to know how many states have any given energy - which is hard in
the general case. But what we can easily know is how many states have a given momentum p.

In the discrete perspective, p can only take given values 2πh̄
L
(
nx, ny, nz

)
and the energy can

therefore only take given values E = E0

(
n2

x + n2
y + n2

z

)
.

3In the classical picture, this distance corresponds to the closest point that a α particle with energy E could reach if it
was sent towards the nucleus from infinity.

4or at least approximated using
x1∫
x0

√
x1
x − 1dx ' x1

1∫
0

√
u−1 − 1du = x1

π
2
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In a continuous perspective, p can take any value, and the energy can therefore take any value
as well. The question that makes sense is thus the following:

How many states is there with an energy between E and E + dE ?

2.3.2 Definition

The density of state D(E) is the number of states per energy interval, ie

There are D(E) dE states with an energy between E and E + dE.

Note: be careful with units ! If E is expressed in eV / Hz / nm, D(E) is in eV−1/ Hz−1/
nm−1.

Note From discrete to continuous description

∑
p
→
(

L
2πh̄

)3 ∫
d3p

2.3.3 Strategy

The strategy to calculate the DOS is always the same

Step 1 We want to count energy states, but what we can easily do is to count momentum
states. So let’s translate the problem in terms of momentum.

All states with energy between E0 and E0 + dE0 have a momentum with modulus
between p0 and p0 + dp0.

D(p0) dp0︸ ︷︷ ︸
nb of states with momentum of modulus p0 up to dp0

= D(E0) dE0︸ ︷︷ ︸
nb of states with energy E0 up to dE0

(2.3.1)

Note that here, p0 (resp p0 + dp0) is the modulus of momentum corresponding to the
energy E0 (resp E0 + dE0). The differential elements dp0 and dE0 are related - and their
relation is given by the dispersion relation E0 = f (p0) which we calculated before.

So we now need to calculate D(p0)dp0.
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Step 2 To do so, we first calculate the volume in momentum space where the corresponding
states can be found. These states are located on the shell between the sphere of ra-
dius p0 and the sphere of radius p0 + dp0. The volume of this shell depends on the
dimension of the problem

dV3D
shell =

4
3

π (p0 + dp0)
3 − 4

3
πp3

0 = 4πp2
0 dp0 (2.3.2)

dV2D
shell = π (p0 + dp0)

2 − πp2
0 = 2πp0 dp0 (2.3.3)

dV1D
shell = (p0 + dp0)− p0 = dp0 (2.3.4)

Step 3 Finally, we will consider that momentum states are uniformly distributed in momen-
tum space. In 3D, the momentum is quantified p = 2πh̄

L
(
nx, ny, nz

)
, so around any

state, there is a small unoccupied volume
(

πh̄
L

)3
in momentum space. The density of

state in momentum space is thus

D3D(p0) =

(
2πh̄

L

)−3
(2.3.5)

and the number of states with momentum of modulus p0 up to dp0 is thus D3D(p0)×
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dV3D
shell, i.e.:

D3D(p0) =

(
2πh̄

L

)−3
4πp2

0 dp0 (2.3.6)

and we can rewind the calculation to reach D(E0) (fiou !)

2.3.4 Calculations

For 3D massive free particles (detailed calculation)

As calculated before, the dispersion relation is

E =
1

2m
p2 (2.3.7)

which we differentiate to
dE =

1
m

p dp (2.3.8)

Eq. (2.3.1) can then be written as(
2πh̄

L

)−3
4πp2dp = D(E) dE (2.3.9)

= D(E)
1
m

p dp (2.3.10)

and we find

D(E) =
(

L
2πh̄

)3
4πm p =

(
L

2πh̄

)3
4π
√

2m3 ×
√

E

Note The density of state grows with the energy. This is basically saying that, for two
shells with the same thickness dE0, the larger one contains more states than the
small one. Be careful, this result is not as intuitive as it might seem (cf DOS in
2D and 1D) !
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Other useful cases

2D and 1D massive particles

The dispersion relation remains the same as above dE = 1
m p dp, but we should now

consider
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D2D(p0) =
(

2πh̄
L

)−2

dV2D
shell = 2πp0 dp0

D1D(p0) =
(

2πh̄
L

)−1

dV1D
shell = dp0

The relation D(E)dE = D(p0)× dVshell thus becomes

D2D(E) =
(

2πh̄
L

)−2
2πp

dp
dE

=

(
L

2πh̄

)2
2πm

D1D(E) =
(

2πh̄
L

)−1 dp
dE

=

(
L

2πh̄

)√
m
2
× 1√

E

3D photons

The dispersion relation of mass-less particles such as photons is E = h̄kc = pc, leading
to dE = c dp. The distribution of p vectors is the same as for massive 3D particles. We
find therefore:

D(E) =
(

2πh̄
L

)−3
4πp2 dp

dE
(2.3.11)

=

(
L

2πh̄

)3 4π

c3 × E2 (2.3.12)

Including Spin

Unlike momentum, spin is a discrete property: a particle with spin s can access (2s+ 1)
states, from Sz = +h̄s to Sz = −h̄s by steps of h̄. The total density of states should
therefore be multiplied by ×(2s + 1).

With nano-structures

In nano-structures, particles are confined along some directions of space (1 direction in
a quantum well, 2 in a quantum wire and 3 in a quantum dot), and remain free in the
other directions. To describe the existing states in such systems, we need to merge the
results obtained in the previous chapter on quantum confinement, and in this chapter
for free particles.

Well Wire Dot

Confinement 1D 2D 3D

Corresponding DoS δ(E− E0n2
x) δ(E− E0

(
n2

x + n2
y

)
) δ(E− E0

(
n2

x + n2
y + n2

z

)
)

Degree of freedom 2 1 0
Corresponding DoS indep E ∝ 1/

√
E -

The total density of state is the product of these two contributions:
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Free particles (3 Degrees of Freedom)

Quantum well (2 DoF)

Quantum wire (1 DoF)

Quantum dot (0 DoF)

2.3.5 Summary on density of states

Free massive part. 3D Free massive part. 2D Free massive part. 1D Photon

dnp 4πp2 dp 2πp dp dp 4πp2dp

D(p) 1/
(

2πh̄
L

)3
1/
(

2πh̄
L

)2
1/
(

2πh̄
L

)
1/
(

2πh̄
L

)3

E p2

2m
p2

2m
p2

2m p c
dE 1

m p dp 1
m p dp 1

m p dp c dp

D(E) 4π
√

2m3/
(

2πh̄
L

)3
×
√

E 2mπ/
(

2πh̄
L

)2 √
m/

(√
2 2πh̄

L

)
× 1√

E
4π/

(
2πh̄c

L

)3
× E2

with spin s: D → D× (2s + 1)

2.4 Take home message

• Plane waves are very often used to describe or at least label quantum states.

• The evanescent behavior of plane waves penetrating a potential barrier provides a non-zero
probability for a quantum particle to tunnel through the barrier.

• The density of states counts the number of quantum states with a given energy: there are
D(E).dE states with an energy between E and E + dE.

• The expression of the density of states depends on the dispersion relation (massive or mass-
less particles ?) and on the dimensionality of the problem.



Chapter 3

Occupation factor

3.1 Occupation number

So far, we have discussed which states were accessible to the system - this means that we can
prepare the system and put it in any of these states. But what if we don’t prepare it, and just let it
go to its “natural” equilibrium state. Which state would that be ?

An equivalent way to state this question is:

What is the probability of finding the system in any given state ?

What is the average number of particle in any given state ?

Note 1 This question is not specific to quantum mechanics. We could basically ask the same
question concerning the molecules in this room: what the probability of finding a
molecule traveling at 10 m/s towards the window ?

Note 2 The notion of “natural equilibrium” would require much more development than
what we will do here. Roughly speaking, it corresponds to a thermal state, charac-
terized by the thermodynamical potential of the system being minimal. We won’t go
further into the details.

We will accept the following key results:

• The average number of particles occupying any given state only depends on the
energy of this state and on the quantum nature of particles (electrons are fermions,
photons and phonons are bosons).

• The probability distribution is entirely determined by two parameters: the tem-
perature T and the chemical potential µ

f (ε) =
1

exp
(

ε−µ
kBT

)
+ α

with α =


+1 Fermions→ Fermi Dirac distribution

0 Classical→ Maxwell Boltzmann distribution

−1 Bosons→ Bose Einstein distribution

where kB = 10−23 J.K−1 is the Boltzmann constant.

33
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Note 3 The chemical potential is probably not as usual to you as the temperature, but it plays a
similar role. Roughly speaking, temperature is related to the amount of energy stored
in the system ; the chemical potential is related to the amount of particles stored in
the system1. A qualitative picture takes the chemical potential as the quantity of work
required to add one additional particle to the system - or equivalently the amount of
work gathered when extracting a particle from the system.

Two systems who can share energy will converge towards the same temperature ; two systems
who can share particles will converge towards the same chemical potential.

Note 4 We introduced here two types of particles. Fermions have half-integer spins (elec-
trons, holes, nucleons, quarks, neutrinos...), while bosons have integer spins (photons,
phonons). When considering an ensemble of indistinguishable particles, the former
interfere destructively, while the latter interfere constructively (and classical particles
don’t interfere at all). This difference results from very fundamental properties of
symmetry groups, which will not be discussed here.

Note 5 If −µ � kBT (which happens at high temperatures), the distribution function f is the
same for Fermions, Bosons or classical particles.

Note 6 The Greek letter µ is used both for the chemical potential (in J) and for the mobility
of carriers (in cm2.V−1.s−1). To avoid confusion, the chemical potential of Fermions is
often referred to as Fermi energy and noted EF, for reasons that should become clear by
the end of this lecture.

First application

With a simple accounting, we get the total number of particles and total energy of the sys-
tem:

N =
∫

dε D(ε) f (ε)

E =
∫

dε ε D(ε) f (ε)

Note If N is fixed, then µ has the change with the temperature such that
∫

dε D(ε). f (ε)
remains constant.

Note While energy is the most useful way to label states, it is always possible to con-
sider counting states by momentum, for instance: E =

∫
d3p ε(p) D(p) f (ε(p)).

3.2 Maxwell Boltzmann distribution - equipartition theorem

We first consider a classical gas, like air in this room. We describe it as N classical massive free
particles in 3D, at a temperature T.

1. The density of state for 3D massive free particles is given by D(E) = γ
√

E, and classical
particles are populating energy states according to the Maxwell Boltzmann distribution.

1Be careful with this rough picture: both the energy and the number of particles are actually related to T and µ.
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2. The chemical potential µ is such that the total number of particles is equal to N:

N = γ exp
(

µ

kBT

)
×
∫

dε
√

ε exp
(
− ε

kBT

)
︸ ︷︷ ︸

√
π

2 (kBT)3/2

⇒ exp
(

µ

kBT

)
=

N

(kBT)3/2
2

γ
√

π

We see here that the chemical potential, the temperature and the number of the system are
related.

3. To estimate the average energy per particle, we calculate the total energy E, and use the
previous expression to replace the chemical potential by the number of particles:

E = γ exp
(

µ

kBT

)
×
∫

dε ε
√

ε exp
(
− ε

kBT

)
︸ ︷︷ ︸

3
√

π
4 (kBT)5/2

⇒ E
N

=
3
2
× kBT

4. The same calculation can be performed in 1D and 2D, where D(E) = γ and D(E) = γ/
√

E
respectively:

exp
(

µ2D
kBT

)
= N

kBT
1
γ

E
N = kBT

exp
(

µ1D
kBT

)
= N√

kBT
1√
πγ

E
N = 1

2 × kBT

This result illustrate the celebrated equipartition theorem: each degree of freedom of an ideal
gas contribute to the average energy of the particles by a factor 1

2 × kBT.

Useful integrals:
∞∫
0

dx x
√

x e−x = 3
√

π
4 ,

∞∫
0

dx x e−x = 1,
∞∫
0

dx
√

x e−x =
√

π
2 ,

∞∫
0

dx 1√
x e−x =

√
π

3.3 Bose Einstein distribution - black-body radiation

We will now describe the light emitted by the Sun - which will be most useful for solar cells !
To do so, we will consider the sun as a closed box (“cavity”) in which an ensemble of photons
(mass-less bosons) are at equilibrium at a temperature T� and at zero chemical potential. We will
then estimate the flux exiting through a hole drilled in the wall of the box.

Let us first determine the properties of the photon gas inside the cavity, assumed to be of size
L× L× L.

1. The density of state for 3D mass-less free particles is given by D(E) =
(

L
2πh̄

)3 4π
c3 × E2, and

bosons are populating energy states according to the Bose-Einstein distribution.

2. By definition of the density of state, the number of photons with an energy between E and
E + dE is given by D(E)dE. The spatial density of photons is simply that value divided by
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the volume of the box L3, ie:

dn(E) =
E2

π2h̄3c3

1

exp
(

E
kBT

)
− 1

dE (3.3.1)

3. We now consider a small hole of surface dS drilled in the wall of the cavity. The hole is small
enough for the photon distribution to remain unperturbed inside the cavity. All photons
that can escape the cavity through this hole in the direction Ω over a duration dt initially
occupy a volume dV = cdt cos θdS. Within this volume, there are dn(E)dV photons with
energy between E and E + dE. And as their momentum is isotropically distributed, only a
fraction dΩ/4π is going in the Ω direction up to dΩ. This simple accounting allows us to
estimate the flux of photons with an energy between E and E + dE escaping the cavity in a
direction given by a solid angle between Ω and Ω + dΩ during a duration dt:

dNout(E, Ω) =
dΩ
4π
× dn(E)× cdt cos θdS (3.3.2)

(3.3.3)

4. To obtain the Planck law, we first have to integrate over all possible angles (to obtain the
total number of photon escaping per second and per surface unit)

dφN(E) =
E2

π2h̄3c2

1

exp
(

E
kBT

)
− 1

dE×
π/2∫
θ=0

2π∫
ϕ=0

cos θ
sin θdθdϕ

4π︸ ︷︷ ︸
1/4

(3.3.4)

Considering that each of these photons carries an energy E, we recover the celebrated
Planck’s law expressing the spectral intensity of radiation:

φE(E) = E× dφN(E)
dE

=
1

4π2h̄3c2
× E3

exp
(

E
kBT

)
− 1

0.5 1.0 1.5 2.0 2.5 3.0

0

2×107

4×107

6×107

8×107

1×108

λ [μm]

ϕ
E
[W

/m
2
/μ
m
]

Spoiler alert: in solar cell physics, we will consider a radiation with a non zero chemical
potential !

From this relation, several key results can be reached.

1. The Planck law can be expressed with different units, keeping in mind that the density of
photons should be adapted

u(E)dE = u(ω)dω = u(λ)dλ

E = h̄ω = hc/λ
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Energy Angular frequency Frequency Wavelength

E3

4π3h̄3c3
1

exp
(

E
kBT

)
−1

(h̄ω)3

4π3h̄2c3
1

exp
(

h̄ω
kBT

)
−1

(hν)3

2π2h̄2c3
1

exp
(

hν
kBT

)
−1

2hc
λ5

1
exp

(
hc

λkBT

)
−1

Emax = 2.82 kBT h̄ωmax = 2.82 kBT hνmax = 2.82 kBT λmax = 0.2497 ¯m eV
kBT

2. The average energy per photon is

〈h̄ω〉 =

∫ E3

exp
(

E
kBT

)
−1

dE∫ E2

exp
(

E
kBT

)
−1

dE
=

π4

30 ζ(3)
= 2.7 kBT (3.3.5)

A simple estimate (〈h̄ω〉 = 3 kBT) can be found by neglecting the −1 in the denominator.

3. The spectral intensity is maximum for

0 =
d

dλ

λ−5

exp
(

hc
λkBT

)
− 1

=
−5λ−6

exp
(

hc
λkBT

)
− 1
−

λ−5 × exp
(

hc
λkBT

)
×
(
− hc

λ2kBT

)
(

exp
(

hc
λkBT

)
− 1
)2

⇔5 =
exp

(
hc

λkBT

)
exp

(
hc

λkBT

)
− 1
×
(

hc
λkBT

)

and solving numerically x× ex

ex−1 = 5 for x ' 4.96, we recover the Wien’s displacement law:

λmaxT ' 2.9 10−3 m.K (3.3.6)

4. The total power emitted per surface unit is given by the Stefan law

P =
1

4π2h̄3c2
×
∫ E3

exp
(

E
kBT

)
− 1

dE = σT4 (3.3.7)

where we introduced the Stefan constant (memo hint: σ value is 5-6-7-8 in standard units)

σ =
π2k4

B

60h̄3c2
' 5.67× 10−8 W.m−2.K−4 (3.3.8)

3.4 Fermi Dirac distribution - Fermi level

We finally turn to the description of an ensemble of free spin 1/2 fermions in 3D. This situation
will notably help us understand how electrons behave in a solid.

1. The density of state for 3D massive particles is D(E) = 2× 4π
(

L
2πh̄

)3√
2m3
√

E and fermions
obey the Fermi-Dirac distribution fFD. Since exp > 0, the number of fermions occupying
any energy state is fFD < 1, which is compatible with the Pauli exclusion principle: two
fermions can never be found in the same state.

2. At T → 0, exp
(

E−µ
kBT

)
→

+∞ if E > µ

0 if E < µ
and the Fermi-Dirac distribution can therefore be
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approximated by a step-function fFD(E) = θ (µ− E) with a threshold given by the chemical
potential µ. In this situation (T = 0), the chemical potential is called the Fermi energy and
noted EF.

3. An ensemble of Fermions is correctly described by such a step-function distribution as long
as T � TF = EF/kB.

4. Considering that the ensemble contains N fermions, the Fermi energy has to be such that

N =
∫

dε D(ε). f (ε)

= 8π
(

L
2πh̄

)3√
2m3

EF∫
0

√
εdε

⇒ n = N
L3 = 8

3 π
(√

2m
2πh̄

)3
E3/2

F

n m EF TF

Nucleus ∼ 1044 m−3 1.6× 10−27 kg ∼ 50 MeV 109K
Atom ∼ 1031 m−3 9× 10−31 kg ∼ 200 eV 106 K
Metal ∼ 1029 m−3 9× 10−31 kg ∼ 10 eV 105 K

EF = h2

8m
(3n

π

)2/3

Numerical applications for nuclear, atomic and condensed matter physics show that the
ambient temperature is well below the Fermi temperature. This means that fermions in
these systems are well in the quantum regime (they are degenerated) and that Pauli principle
is apparent. The Fermi energy gives a typical scale, and it is often useful to approximate the
Fermi-Dirac distribution “around” the Fermi energy (i.e. for energies E such that |E− EF| �
EF:

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

E/μ

f F
D

• Around the Fermi level

fFD '
1
2
− 1

4
× E− µ

kBT

• Well above the Fermi
level

fFD ' exp
(
−E− µ

kBT

)

• Well below the Fermi
level

fFD ' 1

5. The total amount of energy stored in the ensemble is

E =
∫

dε ε.D(ε). f (ε) = 4π

(
L

2πh̄

)3√
2m3

EF∫
0

ε
√

εdε =
3
5

N EF

It is important to see that the Fermi energy is not the average energy per particle (that would
be 3 EF/5), nor the total energy carried by the fermions !

Application to astrophysics (just for fun, no use for STEEM):

A white dwarf is a dead star where two competing forces are balanced:
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1. Gravity tends to collapse the star, as the gravitational energy decreases if the radius of
the star decreases, following

U = −3GM2

5R

where R is the radius of the star, M is its mass and G = 6.67× 10−11 m3 kg−1 s−2 is the
Cavendish constant (demonstration in any undergrad textbook).

2. Pauli principle forbids two electrons to be in the same state, and the internal energy
increases with the density

E =
3
5

N EF =
3
40

(
9

4π2

)2/3 h2

me

N5/3

R2 (3.4.1)

The radius of the white dwarf has to minimize the total energy of the star

0 =
∂

∂R
(U + E) =

3GM2

5R2 −
6

40

(
9

4π2

)2/3 h2

me

N5/3

R3 (3.4.2)

⇒R =
N5/3

me M2
2h2

8G

(
9

4π2

)2/3
(3.4.3)

The mass of the star is essentially given by the number of nucleons (proton and neutron) ;
and each proton is accompanied by one electron. The mass of the star is thus proportional
to the number of electrons, and we write:

M = γN (3.4.4)

On average, for light elements, atoms have as many neutrons as protons, and we take γ ∼
2mp. We therefore find that, the heavier the star, the smaller its radius

R =
1

γ5/3me

2h2

8G

(
9

4π2

)2/3 1
M1/3 (3.4.5)

Radius of white dwarfs as a func-
tion of their mass. Data from “A
catalogue of isolated massive white
dwarfs”, M. Nalezyty & J. Majed,
A&A 420, 507–513 (2004). The blue
line is the theoretical value derived
above. It gives a very good esti-
mate for white drawfs lighter than the
sun. For heavier stars, electrons be-
come relativistic and the classical dis-
persion relation E = p2/2m should
be replaced by E =

√
p2c2 + m2c4

(yellow line). The dashed line is the
Chandrasekhar limit. Note that the
theoretical estimate has no free pa-
rameter !
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We can go one step further and consider a star in which all electrons are ultra-relativistic. This
situation can be described by considering free 3D particles with a dispersion relation E = pc (just
like photons), but following a Fermi-Dirac distribution (unlike photons). We therefore find:

N = 2×
( L

hc
)3

EF∫
0

E2dE

= 32π2

9
R3

h3c3 E3
F

E = 2×
( L

hc
)3

EF∫
0

E3dE = 3
4 N EF

= 3
8

( 3
2π

)2/3 hc
R N3/4

This time, the total energy has no local minimum as a function of R:

E + U =

(
3hc
8

(
3

2π

)2/3 (M
γ

)4/3
− 3GM2

5

)
1
R

and such a star can only be stable if the pre-factor is 0, i.e.

M =
1

γ2

(
15hc
24G

)3/2
' 1.7 M�

This is the known as the Chandrasekhar limit (vertical line in the above figure), which sets the
upper limit for white dwarfs. In any star heavier than this limit, Pauli principle is not sufficient
to balance the gravitational collapse and the density increases until electrons and protons merge
to become neutrons - hence forming a neutron star, where gravity is balanced by the degeneracy
pressure of neutrons. The same calculation as before can be performed for neutron stars, basically
by replacing me → mn and γ → mn. This time, if gravity becomes too strong even for neutrons,
the neutron star collapses and form a black hole.

3.5 Take home message

• The probability distribution is entirely determined by two parameters: the temperature T
and the chemical potential µ

f (ε) =
1

exp
(

ε−µ
kBT

)
+ α

with α =


+1 Fermions→ Fermi Dirac distribution

0 Classical→ Maxwell Boltzmann distribution

−1 Bosons→ Bose Einstein distribution

• A simple accounting gives

N =
∫

dε D(ε). f (ε)

E =
∫

dε ε.D(ε). f (ε)

• For classical particles, the MB distribution leads to the equipartition theorem: each degree
of freedom contributes as kBT/2 to the average energy per particle.

• For Fermions, the FD distribution leads to the exclusion principle (two fermions cannot
share the same quantum state). At low temperatures, Fermions fill all available states start-
ing from low energy states. The chemical potential corresponds to the energy of the last
particle.
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• For Bosons, the BE distribution notably leads to the properties of the black-body radiation.
It also allows a phase transition towards a Bose-Einstein condensate, where all particles are
accumulated in the same quantum state. This transition was not discussed here.
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Chapter 4

Basic semiconductor physics

4.1 Introduction

4.1.1 Aim and scope

We want to describe the behavior of materials. The whole quantum description is a nightmare:

H = ∑
atoms

1
2M

P2
i + ∑

electrons

1
2m

p2
i

+
Z2

2 ∑
at.−at.

Vc
(
Ri − Rj

)
+ Z ∑

at.−el.
Vc
(
ri − Rj

)
+

1
2 ∑

el.−el.
Vc
(
ri − rj

)
so we will consider several simplifications. We assume that atoms are distributed periodically,

forming a lattice. We assume that they don’t move (Born Oppenheimer approximation), and we
will only consider the dynamics of electrons. We assume that all electron experience the same
potentials, due to the atomic lattice and to the other electrons (mean field approximation).

With theses approximations, each electron can be taken independently from the others, and
the Hamiltonian can be written as the independent terms

H ' ∑
electrons

1
2m

p2
i + Veff(ri) (4.1.1)

where the effective potential contains all information about what the electron is experiencing.

4.1.2 A first simple example

We will first consider a simple 1D model, to highlight the key properties of electrons in a periodic
potential. We will generalize these results in the next section.

Let us consider N atoms regularly spaced with a distance a - which is a generalization of the
double well situation discussed in the first chapter. We will note h(n)0 the Hamiltonian correspond-

ing to the nth atom alone. The eigenstates of h(n)0 are noted
∣∣∣φ(n)

i

〉
with energies Ei - so each φn

i is

43
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the same function simply centered around the nth atom

φn
i (x) = φi(x + na) (4.1.2)

h0φi = Eiφi (4.1.3)

Because of the tunnel effect, an electron can jump from one atom to the next one. We note Ji the
coupling strength between the ith energy state of two neighboring atoms - and we assume that
the electron can only jump to its nearest neighbor, and cannot jump from from one energy state
to another.

E1

E2

E3
2J2

2J3

J2

J3

J2

J3

Reminder

• In the presence of a trapping potential, the Hamiltonian eigenstates take discrete en-
ergy values, and can be labeled by an integer number n.

• Any coupling between states tends to lift degeneracies. The eigenstates are then delo-
calized. The resulting energy splitting is larger if the coupling is stronger.

Like in chapter 1, H = H0 + V with

H0 |φn
i 〉 = Ei |φn

i 〉 (4.1.4)

V |φn
i 〉 = −Ji

(∣∣∣φn−1
i

〉
+
∣∣∣φn+1

i

〉)
(4.1.5)

We look for eigenstates of the total Hamiltonian H as linear combinations of the eigenstates of H0

(we know we can do this because
{∣∣φn

i
〉}

is a basis). Justify that we can restrict to the same energy
levels on all sites

|ψi〉 = ∑
n

cn
i |φn

i 〉 & H |ψi〉 = E |ψi〉 (4.1.6)

which leads to
E cn

i = Ei cn
i − Ji

(
cn−1

i + cn+1
i

)
(4.1.7)

Due to the lattice symmetry, the Bloch theorem (see below) implies that eigenstates have to
obey

ψj(x + a) = eikaψj(x) (4.1.8)

⇒∑
n

cn
j φn

j (x + a) = ∑
n

cn
j eikaφn

j (x) (4.1.9)

where k = 2pπ
N a , p ∈ Z to satisfy the boundary conditions. As N � 1, we will treat k as a

continuous quantity. Using eq.(4.1.2), we identify

cn+1
j = cn

j eika ⇒ cn
j = c0

j ei n k a (4.1.10)
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and this relation allows us to solve eq.(4.1.7) and to obtain the dispersion relation

E = Ei − 2Ji cos (ka) (4.1.11)

From this finding, several key results should be highlighted

Energy bands

In the double well situation, the energy E0 was split in two discrete values, E0 + J and
E0 − J. In this case, each energy Ei is split into a continuum of energies distributed between
Ei + 2Ji and Ei− 2Ji. These values form an energy band allowed for the electron. The situation
is midway between trapped electrons (the state of which is defined by a discrete number
n, corresponding to discrete energies En) and that of free electrons (the state of which is
defined by a momentum p, corresponding to a continuous energy E = p2/2m). Here, the
electron state is defined by a discrete number (describing in which band is the electron) and
a continuous quantity k (describing where is electron located within the band).

Energy gaps

Just like for trapped electrons, some energies corresponds to no states, and can there not
be reached. This is the case for all energies between the top of one band (Ei + 2Ji) and the
bottom of the following one (Ei+1 − 2Ji+1). These energies form a forbidden band, and the
corresponding width is called the energy gap.

Folding of the band structure

Considering that k always appears in periodic functions, all quantities are unchanged if
we change k → k + p 2π

a . So rather than consider k ∈ [−∞,+∞], we will only consider the
interval

[
−π

a ,+π
a
]
, and reduce any value of k to that interval by adding or subtracting 2π/a

to it an integer amount of times.

Number of states

Considering that k = 2pπ
N a , p ∈ Z and the previous point, we see that there are N different

states (remember that N is the number of atoms in the chain). Since electrons have spin
1/2, there are 2N electronic states per energy band. For all practical cases, as N � 1, we
will consider k to be continuous. But we can now understand that if each atom brings two
electrons per energy state, all the existing states will be filled.

4.1.3 Generic results

This first example was intended to give some global ideas about how electrons behave in a solid.
We will now give strong and generic results. We will not go into the details of the demonstrations.

1. Lattice structure

In our simplified example, we considered a 1D periodic system. In the general case of a 3D
system, a crystalline structure can be defined with two ingredients:

(a) A Bravais lattice - ie an infinite array of points obtained with a translation n1a1 +n2a2 +

n3a3, where ai are the primitive vectors of the lattice.

The Bravais lattice holds quantity of information on the properties of the system, be-
cause it defines the symmetry of the system. Two of the key notions associated to the
Bravais lattice are:
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i. The reciprocal lattice
is essentially the Fourier transform of the direct lattice. It is defined as the ensemble
of points K such that exp (i K.R) = 1, where R = n1a1 + n2a2 + n3a3 is any given
point of the direct lattice. The reciprocal lattice is also a Bravais lattice.

ii. The Brillouin zone
is the region of the reciprocal lattice closer to the origin than to any other point of
the lattice. It is the extension of the interval

[
−π

a ,+π
a
]

which played a major role
in our simple example

(b) A motif - ie an ensemble of atoms occupying each point of the lattice.

2. Bloch Theorem is one of the most important result for electrons in a solid. Let’s state it first,
we will discuss its interpretation just below.

Because the lattice potential is periodic, the eigenstate of the Hamiltonian take
the form:

Hψn, k = En kψn, k (4.1.12)

ψn, k(r) = eik.r × un, k(r) (4.1.13)

where un, k(r) is has the same periodicity as the lattice - i.e.

un, k (r + n1a1 + n2a2 + n3a3) = un, k(r)

This theorem is a very deep result, coming from the symmetry properties of the lattice. It
justifies the form of the coefficients c(n)j chosen above.

Note k is the “crystal momentum” or “quasi-momentum”. It does NOT give the total
momentum of the electron

〈p〉n, k0
=
〈
ψn, k0

∣∣− ih̄∇
∣∣ψn, k0

〉
= h̄k0 +

∫
u∗n, k0

(r)∇un, k0(r)d
3r 6= h̄k0

The total momentum of the electron is instead given by

〈p〉n, k0
= m 〈v〉n, k0

=
1
h̄
∇kEn, k0 (4.1.14)

where the first equality comes from Ehrenfest theorem and the second equality
is demonstrated in appendix.

Remarkably (and counter intuitively), this result means that electrons have a well-defined time-
independent velocity despite the potential potential which surrounds them. Unlike what
could be expected in a classical picture, electrons are not colliding with the lattice.

3. Energy bands and energy gaps

Just like in our simple example, the situation is mid-way between electrons in a potential
well (where states are labeled by a discrete number n) and free electrons (where states are
labeled by a wave vector k). Here, electrons are labeled by an energy level (actually, an
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energy band) and a wave vector within this energy level. This means that two electrons
with the same energy band can have different energies (if they have different k) ; and that
two electrons with the same k can have different energies (if they have different n).

This also means that some energies are accessible to the electrons (energy bands), and some
may not be (energy gaps between the bands). Note that in 2D and 3D, there might be no
energy gap between two energy bands, if the bottom of the upper band has less energy than
the top of the lower one.

4. Band folding and Brillouin zone

Just like in our simple example, the periodicity of the potential implies that it is sufficient to
consider k within the first Brillouin zone. The whole dispersion relation (which expresses
the energy E as a function of the quasi momentum k and the energy band n) can be pictured
within this region.

However, this folding is more complicated to picture than in our simple example - simply
because we consider a 3D situation. Usually, the dispersion relation is plotted along specific
directions given by the symmetries of the lattice.

Direct lattice (FCC), Reciprocal lattice (BCC), Brillouin zone (truncated octahedron)

Band structure of free electrons and GaAs (FCC lattice).

5. Phonons

So far we assumed that the atomic lattice was still, and only considered the behavior of
the electrons. We can also take into account the small vibrations of the lattice, which we
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picture as phonons. The coupling between electrons and phonons means that, somehow,
the electrons can either set the atomic lattice on motion (thereby creating a phonon) or take
energy from the shaking of the lattice (thereby absorbing a phonon).

Phonons could be the topic of a whole lecture. We will just flash three results here:

(a) Phonon eigenmodes can be described as plane-waves - ie any vibration of the lattice
can be described as a sum of exp

(
ikph.r

)
. Just like for electrons, the challenge is to

find the dispersion relation - ie the relationship between the momentum kph of the
phonon and its energy. Just like for electrons, the momentum of the phonon can only
take discrete values (multiples of 2π

Na ), which we assume to be continuous if N � 1.

(b) If the motif of the crystalline lattice has p atoms (usually, p = 1 or 2), then there are
p phonon modes - each mode is like a band for the electrons. Usually, one mode has
E(kph = 0) = 0 (and is called acoustic phonon), and one mode has E(kph = 0) 6= 0
(and is called optical phonon).

(c) On top of that, the lattice oscillation can occur along the propagation direction (one
longitudinal mode) or perpendicular to it (two transverse mode)

4.2 Band filling

Let’s add the content of the third lecture to this model !

4.2.1 Metal, insulator and semiconductors

We now know which states are accessible to electrons in a solid, but not how electrons are dis-
tributed among these states. From Fermi Dirac distribution, we know that electrons will stack
starting from low energy states. At ambient temperature, we can consider that T � TF (as shown
in the previous chapter) and that all states below the Fermi level are filled. Three types of mate-
rial can be considered depending on where the Fermi level is located. We will see later that the
response of the system to any stimulation essentially depends on electrons around the Fermi level
- hence on the location of the Fermi level.

• Metals have their Fermi level somewhere in the middle of an energy band. Consequently,
some empty states are available at arbitrary low energies above the Fermi level.
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• Insulator and semiconductors have their Fermi level somewhere in the middle of an energy
gap. The last band below the Fermi level (which is occupied) is called the valence band, the
first band above the Fermi level (which is empty) is called the conduction band. The only
difference between an insulator and a semiconductor is the value of the energy gap. A
semiconductor has a gap small enough such that, at ambient temperature (remember that
the step-like distribution functions spreads a little bit with the temperature), some carriers
are present in the conduction band.

During the STEEM program, you will mostly work with semiconductor, so we will focus on these
materials. We will now highlight two concepts of major importance to understand the behavior
of semiconductors.

4.2.2 Electrons, holes and doping

At T = 0, all states below the Fermi level are filled, all states above are empty. If a carrier is
transferred from the valence band to the conduction band, an empty state will appear below the
Fermi level - exactly like a bubble appears if you remove water from a tank. These empty states
can be described as holes in the filled band. Since the probability of finding an electron at an
energy E is given by fFD(E), the probability of finding a hole (ie of not finding an electron) is
1− fFD(E). Usually, the density of electrons in the conduction band is labeled n, and that of holes
in the valence band is p. We will see that holes contribute to the electrical current as much as
electrons !

Intrinsic p-doped n-doped

In addition to the thermal electrons spontaneously populating the conduction band, it is pos-
sible to add minute quantities of matter, impurity atoms, to “dope” the semiconductor - i.e. to
modify carriers concentration.

• If we add atoms with more electrons than that of the lattice (donor impurities), and with
a highest occupied orbit just below the conduction band, we will increase the density of
electrons in the conduction band. In such n-type semiconductor, the density of electrons in
the conduction band is essentially given by the density of donor impurities: n ' ND.

Example: phosphorus (P) or arsenic (As) in silicon.

• If we add atoms with less electrons than that of the lattice (acceptor impurities), and with a
lowest unoccupied orbit just above the valence band, we will increase the density of holes
in the valence band. In such p-type semiconductor, the density of holes in the valence band
is essentially given by the density of acceptor impurities: p ' NA.

Example: boron (B) or aluminum (Al) in silicon.

• By contrast, an undoped semiconductor is called intrinsic.
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4.2.3 Graphical representations

• How to picture semiconductors (in real space and in momentum space):

In real space In momentum space

Fermi level Yes Yes
Gradient of Fermi level Yes No

Conduction / valence band Yes Yes
Energy gap / energy band Yes Yes (too much ?)
Occupied / empty states Yes Yes
Junction btw materials Yes No

Dispersion relation No Yes
Direct / indirect gap No Yes

• We will see below that a gradient in the Fermi level corresponds to an electrical current. So
at equilibrium, the Fermi level should be perfectly flat in real space.

• The closer the Fermi level is to the bottom of the conduction band, the more electrons there
are in the conduction band.

4.3 Effective mass

4.3.1 Definition

As mentioned above, what matters most for the response of the system are carriers close to the
Fermi level. For semiconductor, the Fermi level lies within the energy gap. The carriers closest
to the Fermi level are therefore around the maximum of the valence band and the minimum of
the conduction band. Around any extremum k0 of a band n, we have E′n(k0) = 0 by definition
(we will not pay much effort to define this derivative properly). So if we expand the dispersion
relation around k0, we find

En (k) ' En(k0) +
1
2

E′′n (k0) (k− k0)
2

which is pretty similar to the dispersion relation of free carriers E = h̄2k2

2m , considering an effective

mass such that E′′n (k0) =
h̄2

me f f
.

Let’s sumarize this key result:
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The behavior (and the density of
states) of carriers at the bottom of the

conduction band or the top of the
valence band can be accounted for

by free carriers with an effective
mass meff = h̄2 (E′′n (k0))

−1.

All information about the shape of the
lattice, the strength of the interactions
between atoms and carriers (or even
between carriers) is included in this

effective mass.

Valence band

Conduction band

k

E
Eg

Note The effective mass depends on band considered: it is for instance not the same in the
valence band and in the conduction band (see figure above).

Note Properly speaking, the effective mass also depends on the direction considered - and a
proper definition would be

(
m−1

eff

)
α, β

= h̄−2∂kα
∂kβ

En. For the sake of simplicity, we

will only consider isotropic effective masses.

4.3.2 Effective density of states

In a semiconductor, the Fermi energy lies somewhere between the valence and conduction band.
As the temperature is not 0 K , some electrons will be promoted from the valence band to the
conduction band. Considering that the distance between any band and the Fermi level is much
larger than thermal energy kBT, the density of electrons thermally promoted to the conduction
band is

n =
∫
CB

D(E) fFD(E) dE '
∫
CB

D(E) e
EF−E
kBT dE

Rembering that there are no states in the band gap, we can re-write with a simple variable change

n = NC exp
(

EF − EC
kBT

)

where NC =
∫
CB

D(E) e
EC−E
kBT dE is called the effective density of states in the valence band. Assuming

a parabolic dispersion relation (ie we accept the effective mass approximation at the bottom of the
band, and consider that electrons never explore high energies), we can easily1 estimate

NV '
(

1
2πh̄

)3
4π
√

2m3
eff, CB

+∞∫
0

√
E e

−E
kBT dE = 2

(
meff, CBkBT

2πh̄2

)3/2
(4.3.1)

1if you remember that
∞∫
0

dx
√

x e−x =
√

π
2 !
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In the same way, it is possible to estimate the number of holes depleted in the valence band as

p =
∫
VB

D(E) (1− fFD(E)) dE '
∫
VB

D(E)× e
E−EF
kBT dE

and we find a similar expression

p = NV exp
(

EV − EF
kBT

)
where the effective density of state in the conduction band is given by

NV '
(

1
2πh̄

)3
4π
√

2m3
eff, VB

0∫
−∞

√
−E× e

E
kBT dE = 2

(
meff, VB kBT

2πh̄2

)3/2
(4.3.2)

We can use these results to demonstrate two important properties of carriers in a semiconduc-
tor:

Law of mass action

Remarkably, the product n× p does not depend on the position of the Fermi level, but only
on the value of the gap

n p = NC NC exp
(
−

Eg

kT

)
≡ n2

i (4.3.3)

This product is therefore independent of the doping of the material (which translates into
a shift of the Fermi level). It can be understood in the following way: starting from an
intrinsic material (n = p = ni), we add some acceptor impurities and increase the density
of holes in the valence band (p → ND � ni). As there are now more holes, an electron in
the conduction band is more likely to recombine and decay towards the valence band. As a
result, the density of electrons decreases.

A complementary picture is the following: at equilibrium, the number of thermal excitation
promoting electrons from conduction band to the valence band has to balance the number
of spontaneous decay from the conduction band to the valance band. The excitation rate
only depends on the temperature and is unaffected by the doping. The decay process can
be treated as an interaction between an electron and a hole, and its rate thus scales with the
product of the concentration of the reactant. For the decay rate to be independent of doping,
n× p has to be independent of the doping as well.

Note that this property only holds at thermal equilibrium - which is in particular not the case
for a system under illumination.

Position of the Fermi level

• In an intrinsic semiconductor, charge neutrality implies n = p ≡ ni and hence

E(i)
F =

EC + EV
2

+
3
4

kT × ln
meff, VB

meff, CB

If meff, VB = meff, CB, then the Fermi levels is at the middle of the gap.
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• In a n-doped semiconductor, n = ND and p = n2
i /ND according to the law of mass

action. Assuming meff, VB = meff, CB for simplicity, we easily find

E(n)
F = E(i)

F + kT × ln
ND
ni

• Similarly, for a p-doped semiconductor, we get

E(p)
F = E(i)

F − kT × log
NA
ni

4.4 Elements of response theory

The goal of all this is to be able to describe / predict how the material will behave when submitted
to an external stimulation. This will be the object of your following courses through the STEEM
program. Here, we will give a brief introduction to two standard stimulation: an external electric
field, and an external illumination.

4.4.1 Electronic transport

In a classical picture, when a voltage is applied to a semiconductor material, carriers are accel-
erated by the potential difference and their transport forms an electrical current j. The proper
way to treat this situation in our quantum description would be to add the corresponding en-
ergy ∑

i
− eφ(ri) to the Hamiltonian. However, this is quite cumbersome, and we will rather use a

semi-classical model, where the electrical current can still be estimated by a simple accounting of
carriers:

j = ∑
occupied states

carrier charge× carrier velocity (4.4.1)

As mentioned before, within the wave-packet approximation (see appendix), the velocity of a
carrier in the band n with crystalline momentum k0 is given byvn(k0) =

1
h̄ ∂kEn(k0). From these

results, we can already derive two major properties of electronic transport:

Filled bands are inert

This is a surprising yet crucial result:

A band that is completely filled with carriers cannot contribute to the
electrical current.

Let us demonstrate this property for a 1D system, and accept its generalization. The current
contribution of the band n, assumed to be completely filled, is given by:

Jn = ∑
full band

(−e)× vn(k) = −e
L

2π

π/a∫
−π/a

dk ∂kEn(k)

= −e
L

2π

[
En

(π

a

)
− En

(
−π

a

)]
= 0

Note This property justifies how previous assumption that only the energy bands
close to the Fermi level are relevant. Any other band is either completely full
or completely empty, and has therefore no contribution to the total current.
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Holes contribution to the current

The concept of holes that we introduced before is actually particularity useful to estimate
the contribution to current of almost full bands (typically, the valence band), owing to the
following result:

It is equivalent to consider that the charge current results either from the
motion of negatively charged electrons or of positively charged holes.

This rule comes from the previous property:

Jn = −e ∑
filled

vn(k) = −e

 ∑
full band

vn(k)︸ ︷︷ ︸
=0

− ∑
unfilled

vn(k)

 = +e ∑
unfilled

vn(k) (4.4.2)

We now consider what happens when we actually apply a voltage.

Carriers dynamics

We will accept2 that the dynamics of a carrier is simply given by

h̄
d
dt

k = Fext (4.4.3)

d
dt

vn =
1

meff
Fext (4.4.4)

where Fext = e∇φ = −e E is the external force applied to the carrier (in this case, it is due
to the electric field resulting from the applied bias).

Note We see here the difference between p and h̄k. The total momentum p of an electron
changes under the influence of the all forces (ie interactions with the lattice and
external forces). The crystalline momentum h̄k already includes lattice effects, and
is modified by the application of external forces only.

Note We also see the effective mass appearing again, playing a role similar to the real
mass in Newton’s second law.

Ideal systems: Bloch oscillations

Let’s consider for now the ideal system we have developed so far, in which the lattice is
perfectly periodic, without any impurity. According to eq.(4.4.3), the crystalline momentum
increases linearly over time3, as k(t) = k0 − eE

h̄ t. This is in stark contrast with the behavior
of a free gas, in which the total momentum would increase. The difference is striking when
considering the velocity of the carriers:

vn (k(t)) =
1
h̄

∂kEn

(
k0 −

eE
h̄

t
)

2This actually comes from adding −eφ to the Hamiltonian, and estimating the perturbation induced on the previous
eigenstates.

3In this case, we cannot use eq.(4.4.4) because, as k changes, the effective mass changes as well and the equation is a
nightmare to integrate.
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As En(k) is periodic, this means that the velocity of carriers (and hence the electrical current)
is periodic - i.e. carriers are oscillating back and forth under the influence of a fixed DC voltage ! The
extremely surprising result is called Bloch oscillations. It is easily destroyed by non-idealities,
and therefore extremely hard to see in real solid state systems - but it can be experimentally
observed in cold atoms experiments !

Non-ideal systems: mobility

Let’s now consider a less exotic case, where carriers are likely to collide with impurities,
or interact with phonons. We will accept that these effects can be accounted by a viscous
force Fcoll = −meff

τ v, where τ is the typical time between two collisions. Using eq.(4.4.4), it
is straightforward to show that the steady-state velocity reaches the value

v =
−eτ

meff︸︷︷︸
µ

E

where we introduced the mobility µ = −eτ
meff

- a key property that you will often meet in
future lectures.

Notes for the future

Drift and diffusion

In this subsection, we considered the motion of particles induced by a potential
gradient v = −µ∇φ (with E = −∇φ). This motion leads to an electrical current
jdrift = neµ∇φ which is called a drift current. In addition to it, a diffusion current
can be due to a concentration gradient. The Fick law provides an expression for
this current: jdiff = −eD∇n where D is the diffusion constant of the electrons.

Note that a mobility and diffusion coefficient can also be defined for holes.

Einstein relation

A remarkable result from statistical physics (the fluctuation-dissipation theo-
rem) allows to relate the diffusion coefficient D and the mobility µ of carriers
in the so-called Einstein relation:

D
µ

=
kBT

e

Total current

Considering these two results, and remembering that the effective density of
states at a position x in the material is given by n(x) = NC exp

(
EF(x)−EC(x)

kT

)
(with EC(x) = EC − eV(x)), we can express the total current induced in the
material as

Jtot = jdrift + jdiff = −nµ∇EF (4.4.5)

In other words, the electrical current appears as a gradient of the Fermi level
throughout the material.
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4.4.2 Absorption and emission of light

Shining light on a material essentially means adding an electromagnetic wave to the problem
E = E0

(
eiωt). The field can either provide energy to a carrier, promoting it from a lower to a

higher energy state (absorption), or gather energy from a carrier as the particle decays from a
higher to a lower energy state (emission). The problem then becomes:

If an electron is initially is a state |ψi〉, how likely is it to evolve towards a state
∣∣∣ψ f

〉
under the influence

of illumination ?

Just like for the voltage, the influence of an illumination should be considered by including
in the Hamiltonian an additionnal term corresponding to the light-matter interaction. There are
basically two ways to do this, which are equivalent. The easiest (but least intuitive) way4 is simply
to change p→ p− qA, where A is the magnetic vector potential5, leading to

h =
(p + eA)2

2m
+ Veff(r) ' h0 +

e
m

p.A (4.4.6)

Provided that the field is weak enough, the second term can be treated perturbatively. The Fermi
Golden Rule (see chapter 1) then relates the transition rate from |ψi〉 to

∣∣∣ψ f

〉
to the matrix ele-

ment
∣∣∣〈ψ f

∣∣∣ p.A |ψi〉
∣∣∣2. By studying this term, we can infer most properties of light absorption

and emission. A full quantum treatment would underline the existence of three contributions:
absorption, spontaneous emission and stimulated emission. We will not perform the derivation
here, but simply accept the following results.

Energy and momentum conservation

As always in Physics, total energy has to be conserved throughout the process. For an
absorption (resp. emission) process, this condition translates as:

Ei ± h̄ω = E f (4.4.7)

In the same way, the total momentum has to be conserved. Remarkably, because of the
periodicity of the lattice, it can be shown that, actually, the momentum has to be conserved.
Furthermore, since the dispersion relation for light is q = ω/c, we can assume q� ki, f and
we finally get the condition:

ki ± q
'0

= k f (4.4.8)

In other words, direct optical transitions cannot alter the quasi-momentum of carriers (see
“indirect transitions” below).

Absorption coefficient

As light propagates through a uniform absorbing medium, its intensity decreases following
the Beer-Lambert law

I(x) = I0 e−a x (4.4.9)

where a(h̄ω) is the absorption coefficient.

4For the record, the second option is to introduce the dipole operator d̂ = −er̂, and to consider the field-dipole inter-
action −d.E .

5which is defined as B = ∇×A, and B is related to E by B = q×E
ω . All this result from Maxwell equations.
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The capacity of a slab of material to absorb light will depend not only on the ability of one
carrier to absorb a photon, but also on the number of carriers in the valence band avail-
able to undergo the transition, and on the number of empty state in the conduction band
to welcome them. It can be shown that, assuming all possible transitions have the same
probability, the absorption coefficient of the material scales as

a(h̄ω)[L−1] ∝
√

h̄ω− Eg (4.4.10)

This expression emphasizes that no absorption is possible if the light frequency is small than
the gap.

Quasi Fermi levels

Under the influence of light, the density of electrons in the conduction band increases and
so does the density of holes in the valence band. Remember that the density of electrons /
holes is related to the position of the Fermi level. In order to increase both densities, we have
to start considering two different Fermi levels, one to describe the population of electrons in
the conduction band, one to describe the population of holes in the valence band. We then
talk about “quasi Fermi levels”. This is a very strong result that will play a major role in PV
physics:

Under illumination, electrons and holes are described by two different quasi
Fermi levels, usually denoted EF, n and EF, p.

Considering that the Fermi energy is the thermodynamic potential of carriers, as an electron
is extracted from the conduction band and injected in the valence band, the maximal amount
of work gathered during this transformation is given by the quasi-Fermi levels splitting (see
below). To rephrase it,

The electrical voltage (as measured with a volt-meter) at the output terminals
of the device is nothing but the quasi-Fermi levels splitting.

qV = EF, n − EF, p

Recombination rate

Conversely, it is often important to estimate how quickly carriers in the conduction band
recombine spontaneously with holes from the valence band. The full calculation is a bit
long, and leads to the van Roosbroeck - Shockley relation:

Rspont(h̄ω)[L−3.s−1] = a(h̄ω)
(h̄ω)2

π2h̄3c3

1

exp
(

h̄ω−(EF,n−EF, p)
kBT

)
− 1

' B(h̄ω)× n.p

The first equation shows that, the larger the quasi Fermi level splitting EF,n − EF, p, the
stronger the recombination rate. The second equation is an approximation which will be
most often used in PV physics.

Indirect transition
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While direct transitions have to preserve the crystalline momentum, it is also possible to
consider phonon-assisted transitions. In this case, as carriers interact with the photon, they
also absorb or emit a phonon which has very little influence in terms of energy, but carriers
a significant momentum. Energy and momentum conservation then becomes:

Ei ± h̄ω± Ephonon
'0

= E f (4.4.11)

ki ± q
'0
± qphonon = k f (4.4.12)

When both direct and indirect transitions are possible, indirect transitions are much less
likely to happen than direct transition because they require a 3 body interaction. But some-
times (the case in point being Silicon), only indirect transitions are possible. The main differ-
ence is then that, summing over all possible phonons, the absorption coefficient now scales
as

aindirect(h̄ω)[L−1] ∝
(
h̄ω− Eg

)2 (4.4.13)

4.5 Take home message

1. Most fundamental properties of a solid result from the symmetry of the atomic lattice.

2. The behavior of electrons in a solid is very close to that of free electrons, except that

• Free electronic states are defined by a wave vector k; electronic states in a solid a define
by a wave factor k and a quantum number n

• Free electronic states can be found for all energy ; some energies are forbidden in a
solid

• Free electrons have a mass me = 9.11× 10−31 kg ; electrons in a solid have an effective
mass (which can depend on the directions considered) which accounts for its interac-
tions with both atoms and other electrons (mean field approach)

3. The chemical potential is a critical parameter to understand the behavior of carriers

(a) Its position with respect to the energy bands determines the nature of the material
(metal, insulator, semiconductor)

(b) Any electrical current corresponds to a gradient of the Fermi level

(c) A voltage between two points corresponds to a difference between the Fermi levels at
these two points

4. Electronic Transport:

• A band that is completely filled cannot contribute to the electrical current.

• It is equivalent to consider that the charge current results either from the motion of
negatively charged electrons or of positively charged holes.

• Electrical current has two contributions:

– Drift is due to an electric potential gradient and is characterized by mobility v =

µE
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– Diffusion is due to a concentration gradient and is characterized by diffusion coef-
ficient jdiff = −eD∇n

– Drift and diffusion are related by the Einstein relation D
µ = kBT

e

5. When carriers are injected (e.g. under illumination), electrons and holes are described by
two different quasi Fermi levels, usually denoted EF, n and EF, p.

The electrical voltage (as measured with a volt-meter) at the output terminals of the device
is nothing but the quasi-Fermi levels splitting qV = EF, n − EF, p.
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Chapter 5

Appendix

5.1 References to go further

Solid-state physics

• N. W. Ashcroft and N. D. Mermin, Solid State Physics, 1st edition, Thomson Press, 2003.

• C. Kittel, Introduction to Solid State Physics, 8th edition, Wiley, 2004.

The “Ashcroft and Mermin” and “Kittel” are the two most celebrated textbooks on basic
solid-state physics. These are the books to read if you want to know more about Brillouin
zones, phonons and Bloch electrons.

Semiconductors

• S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, Wiley-Interscience, 2006.

A comprehensive and understable reference on how to use semiconductors to produce
working devices. This is where you will find everything you need about pn or tunnel junc-
tions, laser diodes and so on...

Solar cells

• J. Nelson, The physics of solar cells, ICP, 2003.

• https://www.pveducation.org/, https://www.pvlighthouse.com.au/

Dedicated to solar energy, the book by Nelson provides clear and rigorous derivation of key
results of PV physics. PV Education and PV Lighthouse websites offer useful reminders
and interactive applets to get familiar with basic properties of solar cells.

5.2 Reference values for semiconductor materials

You will often have to use numerical values of key parameters (effective masses of electrons or
holes, mobilities...). Besides the short and incomplete table below, a good reference is provided
by the Ioffe Institute (http://www.ioffe.ru/SVA/NSM/Semicond/index.html)

61
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.

ni @300K Eg NC NV me mh µn Dn µp Dp

cm−3 cm−3 cm−3 m0 m0 cm2V−1s−1 cm2/s cm2V−1s−1 cm2/s

Ge 2.4× 1013 0.66 1.04× 1019 6× 1018 0.55 0.37 4 103 101 2 103 50
Si 1.5× 1010 1.12 2.8× 1019 1.04× 1019 1.08 0.56 1.5 103 36 4.5 102 12

GaAs 1.8× 106 1.424 4.7× 1017 7× 1018 0.07 0.5 8.5 103 200 4 102 10
AlAs 4× 101 2.17 1.5× 1019 1.6× 1019 0.7 0.75 1.9 102 5 1.4 102 4
InAs 1× 1015 0.36 9× 1016 6.6× 1018 0.023 0.41 4 104 1000 5 102 13
InP 1.3× 107 1.35 5.7× 1017 1.1× 1019 0.08 0.6 5.4 103 130 2 102 5
GaP 2.26 1.8× 1019 1.9× 1019 1.12 0.8 2.5 102 6.5 1.5 102 4
CdTe 1.44

5.3 Orders of magnitude

Conversion efficiencies

Steam turbine Mechanical W Electrical W 40 % Combustion engine Chemical Q Mechanical W 10 – 50 %

Wind turbine Mechanical W Electrical W (< 59 %) Electric engine Electrical W Mechanical W 30 – 90 %

Water turbine Mechanical W Electrical W 90 % Photosynthesis Solar Q Chemical Q 5 %

Solar cell Solar Q Electrical W (<33 %) Muscles Chemical Q Mechanical W 20 %

Energy and power

Energy (J)

Ambient temperature 10−21

Electron volt 10−19

Visible photon 2 10−19

Binding energy per nucleon 10−10

Daily nutritional need 107

Gasoline in a car tank 109

Lightning 109

1 ton of TNT 5 109

1 ton of oil 4.2 1010

1 gram of Uranium 1011

Tropical cyclone 1012

Hiroshima bomb 1013

Krakatoa Volcano 1017

Tsar bomba 1017

Valdivia Earthquake 1020

World TPES in 2014 1020

Power (W)

Wind turbine (per m2) 2
Human body (heat) 100

Computer 100
Solar panel (per m2) 20

Conso per cap. (Bengladesh) 300
Sprinter 700

Conso per cap. (World,
China)

2 103

Conso per cap. (Europe) 5 103

Conso per cap. (US) 104

Car 105

Conso per cap. (Qatar) 3 105

Nuclear plant 109

Total world consumption 1013

Lightning 1014

Solar flux on Earth 1017

Total solar flux 4 1026
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5.4 Basic differential equations

5.4.1 First order

First order differential equations usually take the form :

∂t f + Γ f = A (5.4.1)

The solution starts at f (0) and converges as an exponential towards A/Γ

f (t) = f (0)e−Γt +
A
Γ

(
1− e−Γt

)
(5.4.2)

5.4.2 Second order

• Two situations should be very familiar :

∂2
t f + ω2

0 f = 0⇒ f (t) = A cos (ω0t) + B sin (ω0t) (5.4.3)

∂2
t f −ω2

0 f = 0⇒ f (t) = Aeω0t + Be−ω0t (5.4.4)

and integration constants A and B are fixed by initial conditions.

• Another familiar situation is provided by forced oscillations :

∂2
t f − Γ∂t f + ω2

0 f = A cos (ωt) (5.4.5)

In this case, we are usually not looking for the full time evolution of the system, but only
its stationnary behavior. As the system is driven at a frequency ω, we will be looking for
solutions oscillating at this same frequency :

f = <
(

f0eiωt
)

(5.4.6)

Owing to the linearity of the equation, we can estimte the amplitude and dephasing of this
oscillation as :

f0 =
A

ω2
0 −ω2 − iΓω

(5.4.7)

5.5 Demonstration of the Fermi Golden Rule

At equilibrium, the system is described by a Hamiltonian H0, associated to a set of eigenstate
{|ψn〉} with energies E(0)

n . If the system is prepared in any of these states, for instance in |ψi〉, it
will stay in this state forever.

We now apply a time dependent perturbation W(t). Note that all perturbations are time de-
pendent, would it be only because you have to switch it on, at some point. Because of this per-
turbation, the system will not stay in |ψi〉 forever, but can evolve towards other states - this is
because |ψi〉 is not an eigenstate of the whole Hamiltonian H = H0 + W(t) anymore. The Fermi
Golden Rule gives an estimation of the departure rate from the initial state.

As we are interested in time evolution of the wave-function, we should consider the Schrodinger



D. Suchet - PHY530 64

equation

ih̄
∂

∂t
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 (5.5.1)

Taking advantage of the spectral theorem, we can decompose any wave function as a sum over
all eigenstates of the Hamiltonian H0:

|ψ(t)〉 = ∑ cn(t) |ψn〉 (5.5.2)

Following a standard trick, we will re-write the coefficients of the linear combination as

cn(t) = exp
(
−i

En

h̄
t
)

c̃n(t) = exp (−iωnt) c̃n(t) (5.5.3)

leading, after few lines of development, to

∂c̃n(t)
∂t

=
1
ih̄∑

k
exp (−iωnkt) c̃k(t)Wnk(t) (5.5.4)

where h̄ωnk = En − Ek and Wnk(t) = 〈ψn|W(t) |ψk〉.

We will now make two assumptions to reach a usable expression:

1. The system is initially in an eigenstate |ψi〉 of H0, ie

cn(0) = δn,i (5.5.5)

2. We are only considering short term variations, such that the system is more likely to stay in
the initial state than to evolve towards any other state:∣∣cn 6=i(t)

∣∣� 1 (5.5.6)

With these two assumptions, which correspond to a first order perturbation theory, one term
prevails in the right hand side of eq.(5.5.4):

∂c̃n(t)
∂t

' 1
ih̄

exp (−iωnit) Wni(t) (5.5.7)

which we can integrate to

c̃n(t) =
1
ih̄

t∫
0

dt′ e−iωnit′ Wni(t′) (5.5.8)

The probability of finding the system in any state
∣∣∣ψ f

〉
after a time t is thus given by

Pi→ f (t) =
∣∣∣c f (t)

∣∣∣2 =
1
h̄2

∣∣∣∣∣∣
t∫
0

dt′ e−iω f it′ W f i(t′)

∣∣∣∣∣∣
2

(5.5.9)

To further simplify this expression, let’s assume that the perturbation is switched on at t = 0
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and takes a sine form afterwards

W(t > 0) = 2W cos (ωt) = W
(

eiωt + e−iωt
)

(5.5.10)

Equation (5.5.9) then reduces to

Pi→ f (t) =

∣∣∣〈ψ f

∣∣∣W |ψi〉
∣∣∣2

h̄2

∣∣∣∣∣∣ e
i(ω−ω f i)t − 1

i
(

ω−ω f i

) +
ei(ω+ω f i)t − 1

i
(

ω + ω f i

)
∣∣∣∣∣∣
2

(5.5.11)

Assuming that the excitation is close to the resonant frequency ω f i ∼ ω, we will neglect the
second term which corresponds to a non resonant contribution1. We then recover an expression
close to the previous one:

Pi→ f (t) =

∣∣∣〈ψ f

∣∣∣W |ψi〉
∣∣∣2

h̄2 f
(

ωi f −ω, t
)

(5.5.12)

where f (ω, t) =
sin2( ωt

2 )

( ωt
2 )

2 has a sharp peak around 0.

Transition towards continuum

So far, we considered the probability of finding the system in any given final state
∣∣∣ψ f

〉
knowing

that it was initially in the state |ψi〉. What we are actually interesting in is the departure rate from
|ψi〉, regardless of the final state. So we should sum all possible contributions

Pi→(t) = ∑
ψ f

Pi→ f (t) =
∫

dE f D(E f )

∣∣∣〈ψ f

∣∣∣W |ψi〉
∣∣∣2

h̄2 f
(Ei f

h̄
−ω, t

)

where D(E) is the density of state (this transition from a discrete sum to an integral is detailed in
chapter 2). Assuming that the density of state is much less sharp than f , we will replace it by its
resonant value2 leading to

Pi→(t) =
2π

h̄

∣∣∣〈ψ f

∣∣∣W |ψi〉
∣∣∣2 D(E f = Ei) (5.5.13)

where we used
∫

f (ω, t) dω = 2πt.

5.6 Demonstration of Bloch theorem

The potential Veff experienced by the electrons is periodic with a period a:

V(x + a) = V(x)

Let us introduce a translation operator T̂a, such that for any function f ,(
T̂a f
)
(x) = f (x + a)

1This approximation is known as the rotating wave approximation.
2
∫

f (x)g(x) dx ' g(x0)
∫

f (x) dx if f is sharply peaked around x0. Another way to see this is to consider that f (x) '
A× δ(x− x0), and the amplitude A =

∫
f (x)dx can be estimated by integrating both sides of this equation.
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1. This translation operator is unitary (ie T̂†
a T̂a = 1). This implies that all its eigenvalues have

a modulus equal to 1. We can choose to write these values as eika.

2. This translation operator commutes with Ĥ. This implies we can chose a basis of shared
eigenvectors {ψ} such that

Ĥ |ψ〉 = E |ψ〉
T̂a |ψ〉 = eika |ψ〉

Bloch function

Let us consider u(x) = e−ikxψ(x). We can easily show that u is periodic with a period a:

u(x + a) = e−ik(x+a)ψ(x + a) = e−ikxe−ika (T̂aψ
)
(x) = e−ikxψ(x)

Quantification of k

Finally, ψ has to be N × a periodic, ie

ψ(x + Na) = ψ(x)

which implies

k =
2pπ

N × a

5.7 Group velocity of Bloch electrons

Considering a Taylor expansion, the energy of an electron in the nth band at quasi-momentum
k0 + q can be related to the energy at quasi-momentum k0 in the same band through

En(k0 + q) = En(k0) +∇kEn(k0).q + ... (5.7.1)

This energy En(k0 + q) is also the eigenvalue associate to the Bloch function ψn, k0+q:(
p2

2m
+ V(r)

)
un, k0+q(r)ei(k0+q).r︸ ︷︷ ︸

ψn, k0+q

= En(k0 + q)un,k0+q(r)ei(k0+q).r (5.7.2)

(
1

2m
(k0 + q− i∇)2 + V(r)

)
︸ ︷︷ ︸

Hk0+q

un,k0+q(r) = En(k0 + q)un,k0+q(r) (5.7.3)

and we can easily show that

Hk+q = Hk +
h̄2

m
(k− i∇) .q +

h̄2

2m0
q2 (5.7.4)
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For small values of q, the eigenvalues of Hk+q can be related to those of Hk through perturbation
theory:

En(k0 + q) = En(k0) +
〈
un, k0

∣∣ ( h̄2

m
(k− i∇) .q +

h̄2

2m0
q2

) ∣∣un, k0

〉
+ ... (5.7.5)

= En(k0) +
〈
un, k0

∣∣ ( h̄2

m
(k− i∇)

) ∣∣un, k0

〉
.q + O(q2) (5.7.6)

= En(k0) +
〈
ψn, k0

∣∣ ( h̄2

m
(−i∇)

) ∣∣ψn, k0

〉
.q + O(q2) (5.7.7)

' En(k0) +
h̄
m
〈p〉n, k0

.q + ... (5.7.8)

and we identify with the first expression

∇kEn(k0) =
h̄
m
〈p〉n, k0

= h̄ 〈v〉n, k0
(5.7.9)

where the last equality stems from Ehrenfest theorem

〈v〉n, k0
≡ ṙ =

1
ih̄

[r, H] = − 1
m

ih̄∇ ≡ 1
m
〈p〉n, k0
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