Ce cours est une introduction à la topologie algébrique, et est destiné aux élèves du PA de mathématiques, ainsi qu’aux élèves des PA de MAP et INFO intéressés par les DataScience, ou l’informatique théorique, et qui souhaitent acquérir un bagage mathématique fort. Ce cours est une bonne préparation (sans être un prérequis) au cours INF 556 (Topological Data Analysis), les outils introduits ayant trouvé des applications récents à l’étude des nuages de points.
Le cours se concentrera principalement sur l'étude des invariants des espaces topologiques en particulier l'homologie. Après quelques rappels de topologie générale (dont l’équivalence d’homotopie), on introduit l’homologie et la cohomologie simpliciales et singulières ainsi que leurs principales propriétés. On définira également le groupe fondamental d’un espace topologique.
Puis nous donnerons des idées générales d'algèbre homologique offrant des applications différentes de la partie principale du cours, en particulier la (co)homologie des groupes.
Tout au long du cours nous introduirons des idées et notions de la théorie des catégories.
Bibliographie
Glenn Bredon, Topology and Geometry, Graduate Texts in Mathematics, 139. Springer-Verlag, New York,
1997
Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002
Chuck Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38.
Cambridge University Press, Cambridge, 1994
Langue du cours : Français
Credits ECTS : 5
- Teaching coordinator: Grégory Ginot