La mécanique quantique a conduit à l’émergence de nouveaux concepts de divers domaines mathématiques (en analyse : espaces de Hilbert formalisés par von Neumann ; en algèbre : théorie des représentations suivant Cartan et Weyl). En retour, ces concepts ont permis de meilleures formalisations en physique fondamentale, ainsi que des découvertes importantes, comme par exemple le modèle standard des particules élémentaires (Glashow, Weinberg, Salam). Pour cet EA, les mathématiques considérées relèveront de la théorie des groupes et la physique visée sera essentiellement celle de l'infiniment petit. 

En physique, que ce soit au niveau classique ou quantique, l'analyse des symétries d'un système permet de simplifier son étude car celles-ci impliquent en général l’existence de quantités conservées, de règles de sélection, etc. Les groupes de symétrie en jeu font partie des outils quotidiens de nombreux domaines de la physique fondamentale. Certaines subtilités mathématiques de théorie abstraite des groupes s’incarnent de façon frappante en physique : par exemple, la différence entre les groupes SU(2) et SO(3) correspond à l’existence de particules de spin demi-entier, objets qui n'ont pas d'interprétation classique. Des extensions de groupes orthogonaux, les groupes de Lorentz et de Poincaré, s’interprètent comme groupes de symétrie des systèmes physiques relativistes. Il se trouve que les groupes unitaires, SU(2) ainsi que U(1) et SU(3), apparaissent aussi comme des groupes de symétrie "interne" des particules élémentaires : cette découverte a conduit à la formulation du modèle standard de la physique des particules mentionné ci-dessus. Cette théorie classifie les briques élémentaires de la matière et décrit leurs interactions, et ses nombreuses prédictions ont passé tous les tests expérimentaux jusqu'à ce jour.

La notion mathématique de représentation linéaire d’un groupe est centrale en mécanique quantique, et est une belle illustration de l’interaction entre mathématique et physique qu’on se propose de présenter : c’est une notion qui pré-existait à la mécanique quantique, mais les directions dans lesquelles elle s’est développée ont parfois été très fortement déterminées par des considérations physiques (E. Wigner). C’est dans cet esprit que seront présentés les rudiments de cette théorie (diagrammes de poids, caractère de représentations, tableaux et diagrammes de Young).

Les séances sont animées alternativement par un enseignant mathématicien et un enseignant physicien.

En parallèle à l'enseignement, les élèves préparent un projet bibliographique sur un sujet de leur choix, donnant lieu à la rédaction d'un mémoire et à une soutenance orale en fin de période.



Langue du cours : Français ou anglais, selon le public




Quantum mechanics has led to the emergence of new concepts in various mathematical fields (in analysis: Hilbert spaces formalized by von Neumann; in algebra: representation theory according to Cartan and Weyl). In return, these concepts have led to better formalizations in fundamental physics, as well as important discoveries, such as the standard model of elementary particles (Glashow, Weinberg, Salam). For this EA, the mathematics considered will be based on group theory and the physics targeted will essentially be that of the infinitely small. 

In physics, whether at the classical or quantum level, the analysis of the symmetries of a system makes it possible to simplify its study because they generally imply the existence of retained quantities, selection rules, etc. The symmetry groups at play are part of the daily tools of many areas of fundamental physics. Some mathematical subtleties of abstract group theory are strikingly embodied in physics: for example, the difference between the SU(2) and SO(3) groups corresponds to the existence of half-entire spin particles, objects that do not have a classical interpretation. Extensions of orthogonal groups, the Lorentz and Poincaré groups, are interpreted as symmetry groups of relativistic physical systems. It so happens that the unit groups, SU(2) as well as U(1) and SU(3), also appear as "internal" symmetry groups of elementary particles: this discovery led to the formulation of the standard model of particle physics mentioned above. This theory classifies the elementary bricks of matter and describes their interactions, and its many predictions have passed all experimental tests to date.

The mathematical notion of linear representation of a group is central to quantum mechanics, and is a beautiful illustration of the interaction between mathematics and physics that we propose to present: it is a notion that pre-existed in quantum mechanics, but the directions in which it developed have sometimes been very strongly determined by physical considerations (E. Wigner). It is in this spirit that the basics of this theory will be presented (weight diagrams, character representations, tables and Young's diagrams).

The sessions are led alternately by a mathematician teacher and a physics teacher.

In parallel to the teaching, the students prepare a bibliographic project on a subject of their choice, leading to the writing of a report and an oral defense at the end of the period.

 

Language of the course: French or English, depending on the audience
ECTS credits: 5